Abstract
Abstract
Background
Cohesin is a chromosome-associated SMC–kleisin complex that mediates sister chromatid cohesion, recombination, and most chromosomal processes during mitosis and meiosis. However, it remains unclear whether meiosis-specific cohesin complexes are functionally active in mitotic chromosomes.
Results
Through high-resolution 3D-structured illumination microscopy (3D-SIM) and functional analyses, we report multiple biological processes associated with the meiosis-specific cohesin components, α-kleisin REC8 and STAG3, and the distinct loss of function of meiotic cohesin during the cell cycle of embryonic stem cells (ESCs). First, we show that STAG3 is required for the efficient localization of REC8 to the nucleus by interacting with REC8. REC8-STAG3-containing cohesin regulates topological properties of chromosomes and maintains sister chromatid cohesion. Second, REC8-cohesin has additional sister chromatid cohesion roles in concert with mitotic RAD21-cohesin on ESC chromosomes. SIM imaging of REC8 and RAD21 co-staining revealed that the two types of α-kleisin subunits exhibited distinct loading patterns along ESC chromosomes. Third, knockdown of REC8 or RAD21-cohesin not only leads to higher rates of premature sister chromatid separation and delayed replication fork progression, which can cause proliferation and developmental defects, but also enhances chromosome compaction by hyperloading of retinoblastoma protein–condensin complexes from the prophase onward.
Conclusions
Our findings indicate that the delicate balance between mitotic and meiotic cohesins may regulate ESC-specific chromosomal organization and the mitotic program.
Funder
national research foundation of korea
rural development administration
Publisher
Springer Science and Business Media LLC
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献