Author:
Galateanu Bianca,Dimonie Doina,Vasile Eugeniu,Nae Sorin,Cimpean Anisoara,Costache Marieta
Abstract
Abstract
Background
The reconstruction of adipose tissue defects is often challenged by the complications that may occur following plastic and reconstructive surgery, including donor-site morbidity, implant migration and foreign body reaction. To overcome these problems, adipose tissue engineering (ATE) using stem cell-based regeneration strategies has been widely explored in the last years. Mounting evidence has shown that adipose-derived stem cells (ADSCs) represent a promising cell source for ATE. In the context of a small number of reports concerning adipose tissue regeneration using three-dimensional (3-D) systems, the present study was designed to evaluate the biological performance of a novel alginate matrix that incorporates human ADSCs (hADSCs).
Results
Culture-expanded cells isolated from the stromal vascular fraction (SVF), corresponding to the third passage which showed the expression of mesenchymal stem cell (MSC) markers, were used in the 3-D culture systems. The latter represented a calcium alginate hydrogel, obtained by the diffusion of calcium gluconate (CGH matrix), and shaped as discoid-thin layer. For comparative purposes, a similar hADSC-laden alginate hydrogel cross-linked with calcium chloride was considered as reference hydrogel (RH matrix). Both hydrogels showed a porous structure under scanning electron microscopy (SEM) and the hADSCs embedded displayed normal spherical morphologies, some of them showing signs of mitosis. More than 85% of the entrapped cells survived throughout the incubation period of 7 days. The percentage of viable cells was significantly higher within CGH matrix at 2 days post-seeding, and approximately similar within both hydrogels after 7 days of culture. Moreover, both alginate-based hydrogels stimulated cell proliferation. The number of hADSC within hydrogels has increased during the incubation period of 7 days and was higher in the case of CGH matrix. Cells grown under adipogenic conditions for 21 days showed that both analyzed 3-D culture systems support adipogenic differentiation in terms of neutral lipid accumulation and perillipin expression. Furthermore, the cells encapsulated in CGH matrix displayed a more differentiated phenotype.
Conclusions
The results of this study suggest that both CGH and RH matrices successfully support the survival and adipogenesis of hADSC. An enhancement of biological performance was detected in the case of CGH matrix, suggesting its promising application in ATE.
Publisher
Springer Science and Business Media LLC
Reference62 articles.
1. Patrick CW: Tissue engineering strategies for adipose tissue repair. Anat Rec. 2001, 263 (4): 361-366.
2. Niemelä C, Miettinen S, Sarkanen JR, Ashammakhi N: Adipose Tissue and Adipocyte Differentiation: Molecular and Cellular Aspects and Tissue Engineering Applications. Topics in Tissue Engineering. Volume 4. Edited by: Ashammakhi N, Reis R, Chiellini F. 2008, , , 1-26.
3. Gomillion CT, Burg KJL: Stem cells and adipose tissue engineering. Biomaterials. 2006, 27 (36): 6052-6063.
4. Parker AM, Katz AJ: Adipose-derived stem cells for the regeneration of damaged tissues. Expert Opin Biol Ther. 2006, 6 (6): 567-578.
5. Vermette M, Trottier V, Ménard V, Saint-Pierre L, Roy A, Fradette J: Production of a new tissue-engineered adipose substitute from human adipose-derived stromal cells. Biomaterials. 2007, 28 (18): 2850-2860.
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献