Author:
Ramsden Richard,Arms Luther,Davis Trisha N,Muller Eric GD
Abstract
Abstract
Background
Inteins are proteins that catalyze their own removal from within larger precursor proteins. In the process they splice the flanking protein sequences, termed the N-and C-terminal exteins. Large inteins frequently have a homing endonuclease that is involved in maintaining the intein in the host. Splicing and nuclease activity are independent and distinct domains in the folded structure. We show here that other biochemical activities can be incorporated into an intein in place of the endonuclease without affecting splicing and that these activities can provide genetic selection for the intein. We have coupled such a genetically marked intein with GFP as the N-terminal extein to create a cassette to introduce GFP within the interior of a targeted protein.
Results
The Pch PRP8 mini-intein of Penicillium chrysogenum was modified to include: 1) aminoglycoside phosphotransferase; 2) imidazoleglycerol-phosphate dehydratase, His5 from S. pombe ; 3) hygromycin B phosphotransferase; and 4) the transcriptional activator LexA-VP16. The proteins were inserted at the site of the lost endonuclease. When expressed in E. coli, all of the modified inteins spliced at high efficiency. Splicing efficiency was also greater than 96% when expressed from a plasmid in S. cerevisiae. In addition the inteins conferred either G418 or hygromycin resistance, or histidine or leucine prototropy, depending on the inserted marker and the yeast genetic background. DNA encoding the marked inteins coupled to GFP as the N-terminal extein was PCR amplified with ends homologous to an internal site in the yeast calmodulin gene CMD1. The DNA was transformed into yeast and integrants obtained by direct selection for the intein's marker. The His5-marked intein yielded a fully functional calmodulin that was tagged with GFP within its central linker.
Conclusions
Inteins continue to show their flexibility as tools in molecular biology. The Pch PRP8 intein can successfully tolerate a variety of genetic markers and still retain high splicing efficiency. We have shown that a genetically marked intein can be used to insert GFP in one-step within a target protein in vivo.
Publisher
Springer Science and Business Media LLC
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献