Marker tolerant, immunocompetent animals as a new tool for regenerative medicine and long-term cell tracking

Author:

Odörfer Kathrin I,Unger Nina J,Weber Karin,Sandgren Eric P,Erben Reinhold G

Abstract

Abstract Background Immune-mediated rejection of labeled cells is a general problem in transplantation studies using cells labeled with any immunogenic marker, and also in gene therapy protocols. The aim of this study was to establish a syngeneic model for long-term histological cell tracking in the absence of immune-mediated rejection of labeled cells in immunocompetent animals. We used inbred transgenic Fischer 344 rats expressing human placental alkaline phosphatase (hPLAP) under the control of the ubiquitous R26 promoter for this study. hPLAP is an excellent marker enzyme, providing superb histological detection quality in paraffin and plastic sections. Results Transplantation of cells from hPLAP transgenic (hPLAP-tg) F344 rats into wild-type (WT) F344 recipients failed because of immune-mediated rejection. Here we show that this problem can be overcome by inducing tolerance to the marker gene by transplantation of bone marrow from hPLAP-tg F344 rats into WT F344 hosts after lethal irradiation, or by neonatal exposure of WT F344 rats to hPLAP-tg F344 cells. As proof-of-principle, we injected bone marrow cells (BMC) from hPLAP-tg rats into the knee joint of marker tolerant, bone marrow-transplanted WT rats, and found successful engraftment and differentiation of donor cells. In addition, hPLAP-tg BMC injected intravenously in neonatally tolerized WT F344 hosts could be traced in lymph nodes, 2 months post-injection. Conclusion In combination with the excellent marker hPLAP, marker tolerant animals may open up new perspectives for all experiments requiring long-term histological tracking of genetically labeled cells.

Publisher

Springer Science and Business Media LLC

Subject

Biotechnology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3