On the activity loss of hydrolases in organic solvents: II. a mechanistic study of subtilisin Carlsberg

Author:

Castillo Betzaida,Bansal Vibha,Ganesan Ashok,Halling Peter,Secundo Francesco,Ferrer Amaris,Griebenow Kai,Barletta Gabriel

Abstract

Abstract Background Enzymes have been extensively used in organic solvents to catalyze a variety of transformations of biological and industrial significance. It has been generally accepted that in dry aprotic organic solvents, enzymes are kinetically trapped in their conformation due to the high-energy barrier needed for them to unfold, suggesting that in such media they should remain catalytically active for long periods. However, recent studies on a variety of enzymes demonstrate that their initial high activity is severely reduced after exposure to organic solvents for several hours. It was speculated that this could be due to structural perturbations, changes of the enzyme's pH memory, enzyme aggregation, or dehydration due to water removal by the solvents. Herein, we systematically study the possible causes for this undesirable activity loss in 1,4-dioxane. Results As model enzyme, we employed the protease subtilisin Carlsberg, prepared by lyophilization and colyophilization with the additive methyl-β-cyclodextrin (MβCD). Our results exclude a mechanism involving a change in ionization state of the enzyme, since the enzyme activity shows a similar pH dependence before and after incubation for 5 days in 1,4-dioxane. No apparent secondary or tertiary structural perturbations resulting from prolonged exposure in this solvent were detected. Furthermore, active site titration revealed that the number of active sites remained constant during incubation. Additionally, the hydration level of the enzyme does not seem to affect its stability. Electron paramagnetic resonance spectroscopy studies revealed no substantial increase in the rotational freedom of a paramagnetic nitroxide inhibitor bound to the active site (a spin-label) during incubation in neat 1,4-dioxane, when the water activity was kept constant using BaBr2 hydrated salts. Incubation was also accompanied by a substantial decrease in Vmax/KM. Conclusion These results exclude some of the most obvious causes for the observed low enzyme storage stability in 1,4-dioxane, mainly structural, dynamics and ionization state changes. The most likely explanation is possible rearrangement of water molecules within the enzyme that could affect its dielectric environment. However, other mechanisms, such as small distortions around the active site or rearrangement of counter ions, cannot be excluded at this time.

Publisher

Springer Science and Business Media LLC

Subject

Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3