Quantum dot imaging for embryonic stem cells

Author:

Lin Shuan,Xie Xiaoyan,Patel Manishkumar R,Yang Yao-Hung,Li Zongjin,Cao Feng,Gheysens Oliver,Zhang Yan,Gambhir Sanjiv S,Rao Jiang Hong,Wu Joseph C

Abstract

Abstract Background Semiconductor quantum dots (QDs) hold increasing potential for cellular imaging both in vitro and in vivo. In this report, we aimed to evaluate in vivo multiplex imaging of mouse embryonic stem (ES) cells labeled with Qtracker delivered quantum dots (QDs). Results Murine embryonic stem (ES) cells were labeled with six different QDs using Qtracker. ES cell viability, proliferation, and differentiation were not adversely affected by QDs compared with non-labeled control cells (P = NS). Afterward, labeled ES cells were injected subcutaneously onto the backs of athymic nude mice. These labeled ES cells could be imaged with good contrast with one single excitation wavelength. With the same excitation wavelength, the signal intensity, defined as (total signal-background)/exposure time in millisecond was 11 ± 2 for cells labeled with QD 525, 12 ± 9 for QD 565, 176 ± 81 for QD 605, 176 ± 136 for QD 655, 167 ± 104 for QD 705, and 1,713 ± 482 for QD 800. Finally, we have shown that QD 800 offers greater fluorescent intensity than the other QDs tested. Conclusion In summary, this is the first demonstration of in vivo multiplex imaging of mouse ES cells labeled QDs. Upon further improvements, QDs will have a greater potential for tracking stem cells within deep tissues. These results provide a promising tool for imaging stem cell therapy non-invasively in vivo.

Publisher

Springer Science and Business Media LLC

Subject

Biotechnology

Cited by 161 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3