Author:
Naskalska Antonina,Szolajska Ewa,Andreev Igor,Podsiadla Malgorzata,Chroboczek Jadwiga
Abstract
Abstract
Background
The production process for the current influenza vaccine takes about 6 months and its antigenic composition must be modified annually. In the attempt towards developing influenza vaccine production that would be faster, safer and cheaper we engineered an influenza vaccine in which multiple copies of hemagglutinin (HA) would be delivered by a vector, adenovirus dodecahedron (Ad Dd). Dd is a virus-like particle, formed by assembly of twelve copies of pentameric penton base (Pb) proteins responsible for virus penetration. In order to attach HA to the vector, an adaptor containing WW domains was used. The WW domain is a linear peptide fragment identified as a partner of proline-proline-x-tyrosine (PPxY) motif present at the N-terminal extremity of the Pb protein, which is a building block of Dd. That tandem of three WW domains in fusion with the protein of interest enables interaction with Dd and efficient translocation to the cytoplasm of cells in culture.
Results
Since HA is an oligomeric protein with complicated processing, we prepared six different constructs of HA (A/swan/Poland/467/2006(H5N1)) in fusion with the WW adaptor. Herein we report baculovirus expression and functional analysis of six HA-WW variants. The best behaving variant was successfully delivered into human cells in vitro.
Conclusions
Engineering of a soluble complex of HA with Dd, a virus-like particle that serves as a vector, an adjuvant and as a multivalent presentation platform, is an important step toward a novel influenza vaccine.
Publisher
Springer Science and Business Media LLC
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献