Author:
Gendron Daniel,Carriero Sandra,Garneau Daniel,Villemaire Jonathan,Klinck Roscoe,Elela Sherif Abou,Damha Masad J,Chabot Benoit
Abstract
Abstract
Background
We previously described the use of tailed oligonucleotides as a means of reprogramming alternative pre-mRNA splicing in vitro and in vivo. The tailed oligonucleotides that were used interfere with splicing because they contain a portion complementary to sequences immediately upstream of the target 5' splice site combined with a non-hybridizing 5' tail carrying binding sites for the hnRNP A1/A2 proteins.
In the present study, we have tested the inhibitory activity of RNA oligonucleotides carrying different tail structures.
Results
We show that an oligonucleotide with a 5' tail containing the human β-globin branch site sequence inhibits the use of the 5' splice site of Bcl-xL, albeit less efficiently than a tail containing binding sites for the hnRNP A1/A2 proteins. A branch site-containing tail positioned at the 3' end of the oligonucleotide also elicited splicing inhibition but not as efficiently as a 5' tail. The interfering activity of a 3' tail was improved by adding a 5' splice site sequence next to the branch site sequence. A 3' tail carrying a Y-shaped branch structure promoted similar splicing interference. The inclusion of branch site or 5' splice site sequences in the Y-shaped 3' tail further improved splicing inhibition.
Conclusion
Our in vitro results indicate that a variety of tail architectures can be used to elicit splicing interference at low nanomolar concentrations, thereby broadening the scope and the potential impact of this antisense technology.
Publisher
Springer Science and Business Media LLC
Reference40 articles.
1. Johnson JM, Castle J, Garrett-Engele P, Kan Z, Loerch PM, Armour CD, Santos R, Schadt EE, Stoughton R, Shoemaker DD: Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science. 2003, 302: 2141-2144. 10.1126/science.1090100.
2. Wu JY, Tang H, Havlioglu N: Alternative pre-mRNA splicing and regulation of programmed cell death. Prog Mol Subcell Biol. 2003, 31: 153-185.
3. Jiang ZH, Wu JY: Alternative splicing and programmed cell death. Proc Soc Exp Biol Med. 1999, 220: 64-72. 10.1046/j.1525-1373.1999.d01-11.x.
4. Boise LH, Gonzalez-Garcia M, Postema CE, Ding L, Lindsten T, Turka LA, Mao X, Nunez G, Thompson CB: bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell. 1993, 74: 597-608. 10.1016/0092-8674(93)90508-N.
5. Tu Y, Renner S, Xu F, Fleishman A, Taylor J, Weisz J, Vescio R, Rettig M, Berenson J, Krajewski S, Reed JC, Lichtenstein A: BCL-X expression in multiple myeloma: possible indicator of chemoresistance. Cancer Res. 1998, 58: 256-262.
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献