Author:
Lewis H Dan,Husain Ali,Donnelly Robert J,Barlos Dimitrios,Riaz Sheraz,Ginjupalli Kalyani,Shodeinde Adetola,Barton Beverly E
Abstract
Abstract
Background
For improved uptake of oligonucleotide-based therapy, the oligonucleotides often are coupled to peptides that facilitate entry into cells. To this end, novel cell-penetrating peptides (CPPs) were designed for mediating intracellular uptake of oligonucleotide-based therapeutics. The novel peptides were based on taking advantage of the nuclear localization properties of transcription factors in combination with a peptide that would bind putatively to cell surfaces. It was observed that adding a glutamate peptide to the N-terminus of the nuclear localization signal (NLS) of the Oct6 transcription factor resulted in a novel CPP with better uptake and better nuclear colocalization than any other peptide tested.
Results
Uptake of the novel peptide Glu-Oct6 by cancer cell lines was rapid (in less than 1 hr, more than 60% of DU-145 cells were positive for FITC), complete (by 4 hr, 99% of cells were positive for FITC), concentration-dependent, temperature-dependent, and inhibited by sodium azide (NaN3). Substitution of Phe, Tyr, or Asn moieties for the glutamate portion of the novel peptide resulted in abrogation of novel CPP uptake; however none of the substituted peptides inhibited uptake of the novel CPP when coincubated with cells. Live-cell imaging and analysis by imaging flow cytometry revealed that the novel CPP accumulated in nuclei. Finally, the novel CPP was coupled to a carboxyfluorescein-labeled synthetic oligonucleotide, to see if the peptide could ferry a therapeutic payload into cells.
Conclusions
These studies document the creation of a novel CPP consisting of a glutamate peptide coupled to the N-terminus of the Oct6 NLS; the novel CPP exhibited nuclear colocalization as well as uptake by prostate and pancreatic cancer cell lines.
Publisher
Springer Science and Business Media LLC
Reference32 articles.
1. Barton BE, Murphy TF, Shu P, Huang HF, Meyenhofen M, Barton AB: Novel Single-Stranded Oligonucleotides that Inhibit STAT3 Induce Apoptosis In Vitro and In Vivo in Prostate Cancer Cell Lines. Mol Cancer Ther. 2004, 3 (10): 1183-1191.
2. Lewis HD, Winter A, Murphy TF, Tripathi S, Pandey VN, Barton BE: STAT3 Inhibition in Prostate and Pancreatic Cancer Lines by STAT3 Binding Sequence Oligonucleotides: Differential Activity Between 5' and 3' Ends. Mol Cancer Therapeutics. 2008, 7 (6): 1543-1550. 10.1158/1535-7163.MCT-08-0154.
3. Tripathi S, Chaubey B, Barton BE, Pandey VN: Anti HIV-1 virucidal activity of polyamide nucleic acid-membrane transducing peptide conjugates targeted to primer binding site of HIV-1 genome. Virology. 2007, 363 (1): 91-103. 10.1016/j.virol.2007.01.016.
4. Said Hassane F, Saleh AF, Abes R, Gait MJ, Lebleu B: Cell penetrating peptides: overview and applications to the delivery of oligonucleotides. Cell Mol Life Sci. 67 (5): 715-726. 10.1007/s00018-009-0186-0.
5. Leach F: Targeting prostate-specific membrane antigen in cancer therapy: can molecular medicine be brought to the surface?. Cancer Biol Ther. 2004, 3 (6): 559-560.
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献