An integrative expression vector for Actinosynnema pretiosum

Author:

Goh Shan,Camattari Andrea,Ng Daniel,Song Ruth,Madden Kevin,Westpheling Janet,Wong Victor VT

Abstract

Abstract Background The Actinomycete Actinosynnema pretiosum ssp. auranticum has commercial importance due to its production of ansamitocin P-3 (AP-3), a potent antitumor agent. One way to increase AP-3 production would be to constitutively express selected genes so as to relieve bottlenecks in the biosynthetic pathway; however, an integrative expression vector for A. pretiosum is lacking. The aim of this study was to construct a vector for heterologous gene expression in A. pretiosum. Results A series of integrative expression vectors have been made with the following features: the IS117 transposase from Streptomyces coelicolor, the constitutive ermE* promoter from Saccharopolyspora erythraea, different ribosome-binding site (RBS) sequences and xylE as a translational reporter. Positive E. coli clones and A. pretiosum transconjugants were assayed by catechol. pAP42, containing an E. coli consensus RBS, and pAP43, containing an asm19 RBS, gave strong and moderate gene expression, respectively. In addition, an operon construct capable of multi-gene expression was created. Plasmid integration sites in transconjugants were investigated and four different sites were observed. Although the most common integration site was within a putative ORF with sequence similarity to NADH-flavin reductase, AP-3 levels and cell growth of transconjugants were unaffected. Conclusion A set of integrative vectors for constitutive gene expression in A. pretiosum has been constructed. Gene translation is easily determined by colorimetric assay on an agar plate. The vectors are suitable for studies relating to AP-3 biosynthesis as they do not affect AP-3 production.

Publisher

Springer Science and Business Media LLC

Subject

Biotechnology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3