Adeno-associated viral vectors engineered for macrolide-adjustable transgene expression In mammalian cells and mice

Author:

Fluri David A,Baba Marie Daoud-El,Fussenegger Martin

Abstract

Abstract Background Adjustable gene expression is crucial in a number of applications such as de- or transdifferentiation of cell phenotypes, tissue engineering, various production processes as well as gene-therapy initiatives. Viral vectors, based on the Adeno-Associated Virus (AAV) type 2, have emerged as one of the most promising types of vectors for therapeutic applications due to excellent transduction efficiencies of a broad variety of dividing and mitotically inert cell types and due to their unique safety features. Results We designed recombinant adeno-associated virus (rAAV) vectors for the regulated expression of transgenes in different configurations. We integrated the macrolide-responsive E.REX systems (EON and EOFF) into rAAV backbones and investigated the delivery and expression of intracellular as well as secreted transgenes for binary set-ups and for self- and auto-regulated one-vector configurations. Extensive quantitative analysis of an array of vectors revealed a high level of adjustability as well as tight transgene regulation with low levels of leaky expression, both crucial for therapeutical applications. We tested the performance of the different vectors in selected biotechnologically and therapeutically relevant cell types (CHO-K1, HT-1080, NHDF, MCF-7). Moreover, we investigated key characteristics of the systems, such as reversibility and adjustability to the regulating agent, to determine promising candidates for in vivo studies. To validate the functionality of delivery and regulation we performed in vivo studies by injecting particles, coding for compact self-regulated expression units, into mice and adjusting transgene expression. Conclusion Capitalizing on established safety features and a track record of high transduction efficiencies of mammalian cells, adeno- associated virus type 2 were successfully engineered to provide new powerful tools for macrolide-adjustable transgene expression in mammalian cells as well as in mice.

Publisher

Springer Science and Business Media LLC

Subject

Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3