Author:
Loignon Martin,Perret Sylvie,Kelly John,Boulais Denise,Cass Brian,Bisson Louis,Afkhamizarreh Fatemeh,Durocher Yves
Abstract
Abstract
Background
Mammalian cells are becoming the prevailing expression system for the production of recombinant proteins because of their capacity for proper protein folding, assembly, and post-translational modifications. These systems currently allow high volumetric production of monoclonal recombinant antibodies in the range of grams per litre. However their use for large-scale expression of cytokines typically results in much lower volumetric productivity.
Results
We have engineered a HEK293 cell clone for high level production of human recombinant glycosylated IFNα2b and developed a rapid and efficient method for its purification. This clone steadily produces more than 200 mg (up to 333 mg) of human recombinant IFNα2b per liter of serum-free culture, which can be purified by a single-step cation-exchange chromatography following media acidification and clarification. This rapid procedure yields 98% pure IFNα2b with a recovery greater than 70%. Purified IFNα2b migrates on SDS-PAGE as two species, a major 21 kDa band and a minor 19 kDa band. N-terminal sequences of both forms are identical and correspond to the expected mature protein. Purified IFNα2b elutes at neutral pH as a single peak with an apparent molecular weight of 44,000 Da as determined by size-exclusion chromatography. The presence of intramolecular and absence of intermolecular disulfide bridges is evidenced by the fact that non-reduced IFNα2b has a greater electrophoretic mobility than the reduced form. Treatment of purified IFNα2b with neuraminidase followed by O-glycosidase both increases electrophoretic mobility, indicating the presence of sialylated O-linked glycan. A detailed analysis of glycosylation by mass spectroscopy identifies disialylated and monosialylated forms as the major constituents of purified IFNα2b. Electron transfer dissociation (ETD) shows that the glycans are linked to the expected threonine at position 106. Other minor glycosylated forms and non-sialylated species are also detected, similar to IFNα2b produced naturally by lymphocytes. Further, the HEK293-produced IFNα2b is biologically active as shown with reporter gene and antiviral assays.
Conclusion
These results show that the HEK293 cell line is an efficient and valuable host for the production of biologically active and glycosylated human IFNα2b.
Publisher
Springer Science and Business Media LLC
Reference58 articles.
1. Chelbi-Alix MK, Wietzerbin J: Interferon, a growing cytokine family: 50 years of interferon research. Biochimie. 2007, 89: 713-718. 10.1016/j.biochi.2007.05.001.
2. Kaluz S, Kabat P, Gibadulinova A, Vojtassak J, Fuchsberger N, Kontsek P: Interferon alpha2b is the predominant subvariant detected in human genomic DNAs. Acta Virol. 1994, 38: 101-104.
3. Gewert DR, Sharp NA, Barber KA, Cooper H, Tucker D, Lewis AP, Thursz M, Crowe JS: Detection of rare allelic variants of the interferon-alpha 2 gene in human genomic DNA. J Interferon Cytokine Res. 1995, 15: 403-406.
4. Mohanty SR, Kupfer SS, Khiani V: Treatment of chronic hepatitis B. Nat Clin Pract Gastroenterol Hepatol. 2006, 3: 446-458. 10.1038/ncpgasthep0550.
5. Vogel W: Treatment of acute hepatitis C virus infection. J Hepatol. 1999, 31 Suppl 1: 189-192. 10.1016/S0168-8278(99)80399-7.
Cited by
90 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献