Author:
Han Dongmei,Norris Stephen M,Xu Zhaohui
Abstract
Abstract
Background
Thermotoga spp. are attractive candidates for producing biohydrogen, green chemicals, and thermostable enzymes. They may also serve as model systems for understanding life sustainability under hyperthermophilic conditions. A lack of genetic tools has hampered the investigation and application of these organisms. This study aims to develop a genetic transfer system for Thermotoga spp.
Results
Methods for preparing and handling Thermotoga solid cultures under aerobic conditions were optimized. A plating efficiency of ~50% was achieved when the bacterial cells were embedded in 0.3% Gelrite. A Thermotoga-E. coli shuttle vector pDH10 was constructed using pRQ7, a cryptic mini-plasmid found in T. sp. RQ7. Plasmid pDH10 was introduced to T. maritima and T. sp. RQ7 by electroporation and liposome-mediated transformation. Transformants were isolated, and the transformed kanamycin resistance gene (kan) was detected from the plasmid DNA extracts of the recombinant strains by PCR and was confirmed by restriction digestions. The transformed DNA was stably maintained in both Thermotoga and E. coli even without the selective pressure.
Conclusions
Thermotoga are transformable by multiple means. Recombinant Thermotoga strains have been isolated for the first time. A heterologous kan gene is functionally expressed and stably maintained in Thermotoga.
Publisher
Springer Science and Business Media LLC
Reference26 articles.
1. Huber R, Langworthy TA, Konig H, Thomm M, Woese CR, Sleytr UB, Stetter KO: Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90 degrees C. Archives of Microbiology. 1986, 144 (4): 324-333. 10.1007/BF00409880.
2. Windberger E, Huber R, Trincone A, Fricke H, Stetter KO: Thermotoga thermarum sp. nov. and Thermotoga neapolitana occurring in African continental solfataric springs. Archives of Microbiology. 1989, 151 (6): 506-512. 10.1007/BF00454866.
3. Takahata Y, Nishijima M, Hoaki T, Maruyama T: Thermotoga petrophila sp. nov. and Thermotoga naphthophila sp. nov., two hyperthermophilic bacteria from the Kubiki oil reservoir in Niigata, Japan. International Journal of Systematic and Evolutionary Microbiology. 2001, 51: 1901-1909. 10.1099/00207713-51-5-1901.
4. Schroder C, Selig M, Schonheit P: Glucose Fermentation to Acetate, CO2 and H2 in the Anaerobic Hyperthermophilic Eubacterium Thermotoga-Maritima - Involvement of the Embden-Meyerhof Pathway. Archives of Microbiology. 1994, 161 (6): 460-470.
5. Harriott OT, Huber R, Stetter KO, Betts PW, Noll KM: A Cryptic Miniplasmid from the Hyperthermophilic Bacterium Thermotoga Sp Strain Rq7. Journal of bacteriology. 1994, 176 (9): 2759-2762.
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献