Folding machineries displayed on a cation-exchanger for the concerted refolding of cysteine- or proline-rich proteins

Author:

Lee Dae-Hee,Kim Sung-Gun,Kweon Dae-Hyuk,Seo Jin-Ho

Abstract

Abstract Background Escherichia coli has been most widely used for the production of valuable recombinant proteins. However, over-production of heterologous proteins in E. coli frequently leads to their misfolding and aggregation yielding inclusion bodies. Previous attempts to refold the inclusion bodies into bioactive forms usually result in poor recovery and account for the major cost in industrial production of desired proteins from recombinant E. coli. Here, we describe the successful use of the immobilized folding machineries for in vitro refolding with the examples of high yield refolding of a ribonuclease A (RNase A) and cyclohexanone monooxygenase (CHMO). Results We have generated refolding-facilitating media immobilized with three folding machineries, mini-chaperone (a monomeric apical domain consisting of residues 191–345 of GroEL) and two foldases (DsbA and human peptidyl-prolyl cis-trans isomerase) by mimicking oxidative refolding chromatography. For efficient and simple purification and immobilization simultaneously, folding machineries were fused with the positively-charged consecutive 10-arginine tag at their C-terminal. The immobilized folding machineries were fully functional when assayed in a batch mode. When the refolding-facilitating matrices were applied to the refolding of denatured and reduced RNase A and CHMO, both of which contain many cysteine and proline residues, RNase A and CHMO were recovered in 73% and 53% yield of soluble protein with full enzyme activity, respectively. Conclusion The refolding-facilitating media presented here could be a cost-efficient platform and should be applicable to refold a wide range of E. coli inclusion bodies in high yield with biological function.

Publisher

Springer Science and Business Media LLC

Subject

Biotechnology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3