Author:
Arai Hidenao,Nishigaki Koichi,Nemoto Naoto,Suzuki Miho,Husimi Yuzuru
Abstract
Abstract
Background
The isothermal amplification of RNA in vitro has been used for the study of in vitro evolution of RNA. Although Qβ replicase has been traditionally used as an enzyme for this purpose, we planned to use norovirus replicase (NV3Dpol) due to its structural simplicity in the scope of in vitro autonomous evolution of the protein. Characteristics of the enzyme NV3Dpol
in vitro were re-evaluated in this context.
Results
NV3Dpol, synthesized by using a cell-free translation system, represented the activities which were reported in the previous several studies and the reports were not fully consistent each other. The efficiency of the initiation of replication was dependent on the 3’-terminal structure of single-stranded RNA template, and especially, NV3Dpol preferred a self-priming small stem-loop. In the non-self-priming and primer-independent replication reaction, the presence of -CCC residues at the 3’-terminus increased the initiation efficiency and we demonstrated the one-pot isothermal RNA (even dsRNA) amplification by 16-fold. NV3Dpol also showed a weak activity of elongation-reaction from a long primer. Based on these results, we present a scheme of the primer-independent isothermal amplification of RNA with NV3Dpol
in vitro.
Conclusions
NV3Dpol can be used as an RNA replicase in in vitro RNA + protein evolution with the RNA of special terminal sequences.
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献