Author:
Chaparro-Riggers Javier F,Loo Bernard LW,Polizzi Karen M,Gibbs Phillip R,Tang Xiao-Song,Nelson Mark J,Bommarius Andreas S
Abstract
Abstract
Background
The recombination of homologous genes is an effective protein engineering tool to evolve proteins. DNA shuffling by gene fragmentation and reassembly has dominated the literature since its first publication, but this fragmentation-based method is labor intensive. Recently, a fragmentation-free PCR based protocol has been published, termed recombination-dependent PCR, which is easy to perform. However, a detailed comparison of both methods is still missing.
Results
We developed different test systems to compare and reveal biases from DNA shuffling and recombination-dependent PCR (RD-PCR), a StEP-like recombination protocol. An assay based on the reactivation of β-lactamase was developed to simulate the recombination of point mutations. Both protocols performed similarly here, with slight advantages for RD-PCR. However, clear differences in the performance of the recombination protocols were observed when applied to homologous genes of varying DNA identities. Most importantly, the recombination-dependent PCR showed a less pronounced bias of the crossovers in regions with high sequence identity. We discovered that template variations, including engineered terminal truncations, have significant influence on the position of the crossovers in the recombination-dependent PCR. In comparison, DNA shuffling can produce higher crossover numbers, while the recombination-dependent PCR frequently results in one crossover. Lastly, DNA shuffling and recombination-dependent PCR both produce counter-productive variants such as parental sequences and have chimeras that are over-represented in a library, respectively. Lastly, only RD-PCR yielded chimeras in the low homology situation of GFP/mRFP (45% DNA identity level).
Conclusion
By comparing different recombination scenarios, this study expands on existing recombination knowledge and sheds new light on known biases, which should improve library-creation efforts. It could be shown that the recombination-dependent PCR is an easy to perform alternative to DNA shuffling.
Publisher
Springer Science and Business Media LLC
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献