Author:
Gutiérrez-Cruz Alma Rebeca,Soto-Rivera Bernardo,León-Chávez Bertha Alicia,Suaste-Gómez Ernesto,Martinez-Fong Daniel,González-Barrios Juan Antonio
Abstract
Abstract
Background
Postoperative hypothermia is a common cause of complications in patients who underwent laparoscopic cholecystectomy. Hypothermia is known to elicit electrophysiological, biochemical, and cellular alterations thus leading to changes in the active and passive membrane properties. These changes might influence the bioelectrical impedance (BI). Our aim was to determine whether the BI depends on the core temperature.
Methods
We studied 60 patients (52 female and 8 male) age 40 to 80 years with an ASA I-II classification that had undergone laparoscopic cholecystectomy under balanced inhalation anesthesia. The experimental group (n = 30) received active core rewarming during the transanesthetic and postanesthesic periods. The control group (n = 30) received passive external rewarming. The BI was recorded by using a 4-contact electrode system to collect dual sets of measurements in the deltoid muscle. The body temperature, hemodynamic variables, respiratory rate, blood-gas levels, biochemical parameters, and shivering were also measured. The Mann-Whitney unpaired t-test was used to determine the differences in shivering between each group at each measurement period. Measurements of body temperature, hemodynamics variables, respiratory rate, and BI were analyzed using the two-way repeated-measures ANOVA.
Results
The gradual decrease in the body temperature was followed by the BI increase over time. The highest BI values (95 ± 11 Ω) appeared when the lowest values of the temperature (35.5 ± 0.5°C) were reached. The active core rewarming kept the body temperature within the physiological range (over 36.5°C). This effect was accompanied by low stable values (68 ± 3 Ω) of BI. A significant decrease over time in the hemodynamic values, respiratory rate, and shivering was seen in the active core-rewarming group when compared with the controls. The temporal course of shivering was different from those of body temperatue and BI. The control patients showed a significant increase in the serum-potassium levels, which were not seen in the active-core rewarming group.
Conclusions
The BI analysis changed as a function of the changes of core temperature and independently of the shivering. In addition, our results support the beneficial use of active core rewarming to prevent accidental hypothermia.
Publisher
Springer Science and Business Media LLC
Subject
Anesthesiology and Pain Medicine
Reference35 articles.
1. Sessler DI: Mild perioperative hypothermia. N Engl J Med. 1997, 336: 1730-1737. 10.1056/NEJM199706123362407.
2. Zaballos Bustingorri JM, Campos Suarez JM: [Non-therapeutic intraoperative hypothermia: prevention and treatment (part II)]. Rev Esp Anestesiol Reanim. 2003, 50: 197-208.
3. Seekamp A, van Griensven M, Hildebrandt F, Wahlers T, Tscherne H: Adenosine-triphosphate in trauma-related and elective hypothermia. J Trauma. 1999, 47: 673-683. 10.1097/00005373-199910000-00011.
4. Hildebrand F, Giannoudis PV, van Griensven M, Chawda M, Pape HC: Pathophysiologic changes and effects of hypothermia on outcome in elective surgery and trauma patients. Am J Surg. 2004, 187: 363-371. 10.1016/j.amjsurg.2003.12.016.
5. Insler SR, Sessler DI: Perioperative thermoregulation and temperature monitoring. Anesthesiol Clin. 2006, 24: 823-837. 10.1016/j.atc.2006.09.001.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Sensors Based on Conducting Polymers for Measurement of Physiological Parameters;IEEE Sensors Journal;2017-04-15
2. Electrodes based on PPy polymer for electrocardiography and impedance plethysmography;VII Latin American Congress on Biomedical Engineering CLAIB 2016, Bucaramanga, Santander, Colombia, October 26th -28th, 2016;2017