Author:
De Cooman Sofie,De Mey Nathalie,Dewulf Bram BC,Carette Rik,Deloof Thierry,Sosnowski Maurice,De Wolf Andre M,Hendrickx Jan FA
Abstract
Abstract
Background
The Zeus® (Dräger, Lübeck, Germany), an automated closed-circuit anesthesia machine, uses high fresh gas flows (FGF) to wash-in the circuit and the lungs, and intermittently flushes the system to remove unwanted N2. We hypothesized this could increase desflurane consumption to such an extent that agent consumption might become higher than with a conventional anesthesia machine (Anesthesia Delivery Unit [ADU®], GE, Helsinki, Finland) used with a previously derived desflurane-O2-N2O administration schedule that allows early FGF reduction.
Methods
Thirty-four ASA PS I or II patients undergoing plastic, urologic, or gynecologic surgery received desflurane in O2/N2O. In the ADU group (n = 24), an initial 3 min high FGF of O2 and N2O (2 and 4 L.min-1, respectively) was used, followed by 0.3 L.min-1 O2 + 0.4 L.min-1 N2O. The desflurane vaporizer setting (FD) was 6.5% for the first 15 min, and 5.5% during the next 25 min. In the Zeus group (n = 10), the Zeus® was used in automated closed circuit anesthesia mode with a selected end-expired (FA) desflurane target of 4.6%, and O2/N2O as the carrier gases with a target inspired O2% of 30%. Desflurane FA and consumption during the first 40 min were compared using repeated measures one-way ANOVA.
Results
Age and weight did not differ between the groups (P > 0.05), but patients in the Zeus group were taller (P = 0.04). In the Zeus group, the desflurane FA was lower during the first 3 min (P < 0.05), identical at 4 min (P > 0.05), and slightly higher after 4 min (P < 0.05). Desflurane consumption was higher in the Zeus group at all times, a difference that persisted after correcting for the small difference in FA between the two groups.
Conclusion
Agent consumption with an automated closed-circuit anesthesia machine is higher than with a conventional anesthesia machine when the latter is used with a specific vaporizer-FGF sequence. Agent consumption during automated delivery might be further reduced by optimizing the algorithm(s) that manages the initial FGF or by tolerating some N2 in the circuit to minimize the need for intermittent flushing.
Publisher
Springer Science and Business Media LLC
Subject
Anesthesiology and Pain Medicine
Reference6 articles.
1. Lowe J, Ernst E: The quantitative practice of anesthesia – use of a closed circuit. 1981, Baltimore: Williams & Wilkins
2. Struys MMRF, Kalmar AF, De Baerdemaeker LEC, Mortier EP, Rolly G, Manigel J, Buschke W: Time course of inhaled anaesthetic drug delivery using multifunctional closed-circuit anaesthesia ventilator. In vitro comparison with a classical anaesthesia machine. Br J Anaesth. 2005, 94: 306-317. 10.1093/bja/aei051.
3. Hendrickx JFA, Cardinael S, Carette R, Lemmens HJ, De Wolf AM: The Ideal O2/N2O Fresh Gas Flow (FGF) Sequence with the Anesthesia Delivery Unit Machine. J Clin Anesth. 2007, 19: 274-279. 10.1016/j.jclinane.2007.01.003.
4. Hendrickx JFA, Dewulf BBC, De Mey N, Carette R, Deloof T, De Cooman S, De Wolf AM: Development and performance of a two step desflurane – O2/N2O fresh gas flow sequence. J Clin Anesth.
5. Hendrickx JFA, Van Zundert AAJ, De Wolf AM: Influence of the reference gas of paramagnetic oxygen analyzers on nitrogen concentrations during closed-circuit anesthesia. J Clin Monit Comp. 1998, 14: 381-84. 10.1023/A:1009969219569.
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献