Geoecological parameters indicate discrepancies between potential and actual forest area in the forest-steppe of Central Mongolia

Author:

Klinge MichaelORCID,Dulamsuren Choimaa,Schneider Florian,Erasmi Stefan,Bayarsaikhan Uudus,Sauer Daniela,Hauck Markus

Abstract

Abstract Background Forest distribution in the forest-steppe of Mongolia depends on relief, permafrost, and climate, and is highly sensitive to climate change and anthropogenic disturbance. Forest fires and logging decreased the forest area in the forest-steppe of Mongolia. The intention of this study was to identify the geoecological parameters that control forest distribution and living-tree biomass in this semi-arid environment. Based on these parameters, we aimed to delineate the area that forest might potentially occupy and to analyse the spatial patterns of actual and potential tree biomass. Methods We used a combination of various geographic methods in conjunction with statistical analyses to identify the key parameters controlling forest distribution. In several field campaigns, we mapped tree biomass and ecological parameters in a study area within the Tarvagatai Nuruu National Park (central Mongolia). Forest areas, topographic parameters and vegetation indices were obtained from remote sensing data. Significant correlations between forest distribution and living-tree biomass on one hand, and topographic parameters, climate data, and environmental conditions on the other hand, were used to delineate the area of potential forest distribution and to estimate total living-tree biomass for this area. Results Presence of forest on slopes was controlled by the factors elevation, aspect, slope, mean annual precipitation, and mean growing-season temperature. Combining these factors allowed for estimation of potential forest area but was less suitable for tree-biomass delineation. No significant differences in mean living-tree biomass existed between sites exposed to different local conditions with respect to forest fire, exploitation, and soil properties. Tree biomass was reduced at forest edges (defined as 30 m wide belt), in small fragmented and in large forest stands. Tree biomass in the study area was 20 × 109 g (1,086 km2 forest area), whereas the potential tree biomass would reach up to 65 × 109 g (> 3168 km2). Conclusions The obtained projection suggests that the potential forest area and tree biomass under the present climatic and geoecological conditions is three times that of the present forest area and biomass. Forest fires, which mostly affected large forest stands in the upper mountains, destroyed 43% of the forest area and 45% of the living-tree biomass in the study area over the period 1986–2017.

Funder

Deutsche Forschungsgemeinschaft

Volkswagen Foundation

Publisher

Elsevier BV

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics,Forestry

Reference66 articles.

1. Academy of Sciences of Mongolia, Academy of Sciences of USSR (1990) National Atlas of the Peoples Republic of Mongolia, Ulaanbaatar, Moscow

2. Batima P, Natsagdorj L, Gombluudev P, Erdenetsetseg B (2005) Observed climate change in Mongolia. AIACC Working Papers 12:1–25

3. Battulga P, Tsogtbaatar J, Dulamsuren Ch, Hauck M (2013) Equations for estimating the above-ground biomass of Larix sibirica in the forest-steppe of Mongolia. J Forest Res 24(3):431–437. https://doi.org/10.1007/s11676-013-0375-4

4. Dagvadorj D, Natsagdorj L, Dorjpurev J, Namkhainyam B (2009) Mongolia assessment report on climate change 2009, Ulaanbaatar, Mongolia

5. Danilin IM (1995) Structure and biomass of larch stands regenerating naturally after clearcut logging. Water Air Soil Pollut 82:125–131. https://doi.org/10.1007/978-94-017-0942-2_14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3