Assessing a novel modelling approach with high resolution UAV imagery for monitoring health status in priority riparian forests

Author:

Guerra-Hernández JuanORCID,Díaz-Varela Ramón A.,Ávarez-González Juan Gabriel,Rodríguez-González Patricia María

Abstract

Abstract Background Black alder (Alnus glutinosa) forests are in severe decline across their area of distribution due to a disease caused by the soil-borne pathogenic Phytophthora alni species complex (class Oomycetes), “alder Phytopththora”. Mapping of the different types of damages caused by the disease is challenging in high density ecosystems in which spectral variability is high due to canopy heterogeneity. Data obtained by unmanned aerial vehicles (UAVs) may be particularly useful for such tasks due to the high resolution, flexibility of acquisition and cost efficiency of this type of data. In this study, A. glutinosa decline was assessed by considering four categories of tree health status in the field: asymptomatic, dead and defoliation above and below a 50% threshold. A combination of multispectral Parrot Sequoia and UAV unmanned aerial vehicles -red green blue (RGB) data were analysed using classical random forest (RF) and a simple and robust three-step logistic modelling approaches to identify the most important forest health indicators while adhering to the principle of parsimony. A total of 34 remote sensing variables were considered, including a set of vegetation indices, texture features from the normalized difference vegetation index (NDVI) and a digital surface model (DSM), topographic and digital aerial photogrammetry-derived structural data from the DSM at crown level. Results The four categories identified by the RF yielded an overall accuracy of 67%, while aggregation of the legend to three classes (asymptomatic, defoliated, dead) and to two classes (alive, dead) improved the overall accuracy to 72% and 91% respectively. On the other hand, the confusion matrix, computed from the three logistic models by using the leave-out cross-validation method yielded overall accuracies of 75%, 80% and 94% for four-, three- and two-level classifications, respectively. Discussion The study findings provide forest managers with an alternative robust classification method for the rapid, effective assessment of areas affected and non-affected by the disease, thus enabling them to identify hotspots for conservation and plan control and restoration measures aimed at preserving black alder forests.

Funder

Ministerio de Ciencia, Innovación y Universidades

Fundação para a Ciência e a Tecnologia

Publisher

Elsevier BV

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3