Characteristics and chemical reactivity of biogenic volatile organic compounds from dominant forest species in the Jing-Jin-Ji area, China

Author:

Lin Ying,Lun Xiaoxiu,Tang Wei,Zhang Zhongzhi,Jing Xiaoxi,Fan Chong,Wang Qiang

Abstract

Abstract Background Biogenic volatile organic compounds (BVOCs) play an essential role in tropospheric atmospheric chemical reactions. There are few studies conducted on BVOCs emission of dominant forest species in the Jing-Jin-Ji area of China. Based on the field survey, forest resources data and the measured standard emission factors, the Guenther model developed in 1993 (G93) was applied in this paper to estimate the emission of BVOCs from several dominant forest species (Platycladus orientalis, Quercus variabilis, Betula platyphylla, Populus tomentosa, Pinus tabuliformis, Robinia pseudoacacia, Ulmus pumila, Salix babylonica and Larix gmelinii) in the Jing-Jin-Ji area in 2017. Then the spatiotemporal emission characteristics and atmospheric chemical reactivity of these species were extensively evaluated. Results The results showed that the total annual BVOCs emission was estimated to be 70.8 Gg C·year− 1, consisting 40.5 % (28.7 Gg C·year− 1) of isoprene, 36.0 % (25.5 Gg C·year− 1) of monoterpenes and 23.4 % (16.6 Gg C·year− 1) of other VOCs. The emissions from Platycladus orientalis, Quercus variabilis, Populus tomentosa and Pinus tabulaeformis contributed 56.1 %, 41.2 %, 36.0 % and 31.1 %, respectively. The total BVOCs emission from the Jing-Jin-Ji area accounted for 61.9 % and 1.8 % in summer and winter, respectively. Up to 28.8 % of emission was detected from Chengde followed by Beijing with 24.9 %, that mainly distributed in the Taihang Mountains and the Yanshan Mountains. Additionally, the Robinia pseudoacacia, Populus tomentosa, Quercus variabilis, and Pinus tabulaeformis contributed mainly to BVOCs reaction activity. Conclusions The BVOCs emission peaked in summer (June, July, and August) and bottomed out in winter (December, January, and February). Chengde contributed the most, followed by Beijing. Platycladus orientalis, Quercus variabilis, Populus tomentosa, Pinus tabulaeformis and Robinia pseudoacacia represent the primary contributors to BVOCs emission and atmospheric reactivity, hence the planting of these species should be reduced.

Funder

Beijing Municipal Science and Technology Project

National Research Program for Key Issues in Air Pollution Control

National Natural Science Foundation of China

Publisher

Elsevier BV

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3