Effect of thinning intensity on the stem CO2 efflux of Larix principis-rupprechtii Mayr

Author:

Zhao Kuangji,Fahey Timothy J.,Wang Xiangzhen,Wang Jie,He Fang,Fan Chuan,Jia Zhongkui,Li Xianwei

Abstract

Abstract Background Stem CO2 efflux (ES) plays a critical role in the carbon budget of forest ecosystems. Thinning is a core practice for sustainable management of plantations. It is therefore necessary and urgent to study the effect and mechanism of thinning intensity (TI) on ES. Methods In this study, five TIs were applied in Larix principis-rupprechtii Mayr 21-, 25-, and 41-year-old stands in North China in 2010. Portable infrared gas analyzer (Li-8100 A) was used to measure ES and its association with environmental factors at monthly intervals from May to October in 2013 to 2015. In addition, nutrients, wood structure and nonstructural carbon (NSC) data were measured in August 2016. Results The results show that ES increased with increasing TI. The maximum ES values occurred at a TI of 35 % (3.29, 4.57 and 2.98 µmol∙m-2∙s-1) and were 1.54-, 1.94- and 2.89-fold greater than the minimum ES value in the CK stands (2.14, 2.35 and 1.03 µmol∙m-2∙s-1) in July for the 21-, 25- and 41-year-old forests, respectively. The ES of the trees in low-density stands was more sensitive to temperature than that of the trees in high-density stands. Soluble sugars (SS) and temperature are the main factors affecting ES. When the stand density is low enough as 41-year-old L. principis-rupprechtii forests with TI 35 %, bark thickness (BT) and humidity should be considered in addition to air temperature (Ta), wood temperature (Tw), sapwood width (SW), nitrogen concentration (N) and SS in the evaluation of ES. If a change in stand density is ignored, the CO2 released from individual 21-, 25- and 41-year-old trees could be underestimated by 168.89 %, 101.94 % and 200.49 %, respectively. CO2 release was estimated based on the stem equation in combination with the factors influencing ES for reference. Conclusions We suggest that it is not sufficient to conventional models which quantify ES only by temperature and that incorporating the associated drivers (e.g. density, SS, SW and N) based on stand density into conventional models can improve the accuracy of ES estimates.

Funder

National Natural Science Foundation of China

Publisher

Elsevier BV

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3