Author:
Wu Chunyan,Chen Yongfu,Hong Xiaojiang,Liu Zelin,Peng Changhui
Abstract
Abstract
Background
The accurate estimation of soil nutrient content is particularly important in view of its impact on plant growth and forest regeneration. In order to investigate soil nutrient content and quality for the natural regeneration of Dacrydium pectinatum communities in China, designing advanced and accurate estimation methods is necessary.
Methods
This study uses machine learning techniques created a series of comprehensive and novel models from which to evaluate soil nutrient content. Soil nutrient evaluation methods were built by using six support vector machines and four artificial neural networks.
Results
The generalized regression neural network model was the best artificial neural network evaluation model with the smallest root mean square error (5.1), mean error (− 0.85), and mean square prediction error (29). The accuracy rate of the combined k-nearest neighbors (k-NN) local support vector machines model (i.e. k-nearest neighbors -support vector machine (KNNSVM)) for soil nutrient evaluation was high, comparing to the other five partial support vector machines models investigated. The area under curve value of generalized regression neural network (0.6572) was the highest, and the cross-validation result showed that the generalized regression neural network reached 92.5%.
Conclusions
Both the KNNSVM and generalized regression neural network models can be effectively used to evaluate soil nutrient content and quality grades in conjunction with appropriate model variables. Developing a new feasible evaluation method to assess soil nutrient quality for Dacrydium pectinatum, results from this study can be used as a reference for the adaptive management of rare and endangered tree species. This study, however, found some uncertainties in data acquisition and model simulations, which will be investigated in upcoming studies.
Funder
Fundamental Research Funds for the Central Non-profit Research Institution of CAF
Subject
Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics,Forestry
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献