Twenty years of drought‐mediated change in snag populations in mixed‐conifer and ponderosa pine forests in Northern Arizona

Author:

Ganey Joseph L.,Iniguez Jose M.,Vojta Scott C.,Iniguez Amy R.

Abstract

Abstract Background Snags (standing dead trees) are important biological legacies in forest systems, providing numerous resources as well as a record of recent tree mortality. From 1997 to 2017, we monitored snag populations in drought-influenced mixed-conifer and ponderosa pine (Pinus ponderosa) forests in northern Arizona. Results Snag density increased significantly in both forest types. This increase was driven largely by a pulse in snag recruitment that occurred between 2002 and 2007, following an extreme drought year in 2002, with snag recruitment returning to pre-pulse levels in subsequent time periods. Some later years during the study also were warmer and/or drier than average, but these years were not as extreme as 2002 and did not trigger the same level of snag recruitment. Snag recruitment was not equal across tree species and size classes, resulting in significant changes in species composition and size-class distributions of snag populations in both forest types. Because trees were far more abundant than snags in these forests, the effect of this mortality pulse on tree populations was far smaller than its effect on snag populations. Snag loss rates increased over time during the study, even though many snags were newly recruited. This may reflect the increasing prevalence of white fir snags and/or snags in the smaller size classes, which generally decay faster than snags of other species or larger snags. Thus, although total numbers of snags increased, many of the newly recruited snags may not persist long enough to be valuable as nesting substrates for native wildlife. Conclusions Increases in snag abundance appeared to be due to a short-term tree mortality “event” rather than a longer-term pattern of elevated tree mortality. This mortality event followed a dry and extremely warm year (2002) embedded within a longer-term megadrought. Climate models suggest that years like 2002 may occur with increasing frequency in the southwestern U.S. Such years may result in additional mortality pulses, which in turn may strongly affect trajectories in abundance, structure, and composition of snag populations. Relative effects on tree populations likely will be smaller, but, over time, also could be significant.

Funder

Rocky Mountain Research Station

Publisher

Elsevier BV

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics,Forestry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3