Abstract
Abstract
Background
Forest management planning involves deciding which silvicultural treatment should be applied to each stand and at what time to best meet the objectives established for the forest. For this, many mathematical formulations have been proposed, both within the linear and non-linear programming frameworks, in the latter case generally considering integer variables in a combinatorial manner. We present a novel approach for planning the management of forests comprising single-species, even-aged stands, using a continuous, multi-objective formulation (considering economic and even flow) which can be solved with gradient-type methods.
Results
The continuous formulation has proved robust in forest with different structures and different number of stands. The results obtained show a clear advantage of the gradient-type methods over heuristics to solve the problems, both in terms of computational time (efficiency) and in the solution obtained (effectiveness). Their improvement increases drastically with the dimension of the problem (number of stands).
Conclusions
It is advisable to rigorously analyze the mathematical properties of the objective functions involved in forest management planning models. The continuous bi-objective model proposed in this paper works with smooth enough functions and can be efficiently solved by using gradient-type techniques. The advantages of the new methodology are summarized as: it does not require to set management prescriptions in advance, it avoids the division of the planning horizon into periods, and it provides better solutions than the traditional combinatorial formulations. Additionally, the graphical display of trade-off information allows an a posteriori articulation of preferences in an intuitive way, therefore being a very interesting tool for the decision-making process in forest planning.
Subject
Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics,Forestry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献