Extending harmonized national forest inventory herb layer vegetation cover observations to derive comprehensive biomass estimates

Author:

Didion Markus

Abstract

Abstract Background National forest inventories (NFI) have a long history providing data to obtain nationally representative and accurate estimates of growing stock. Today, in most NFIs additional data are collected to provide information on a range of forest ecosystem functions such as biodiversity, habitat, nutrient and carbon dynamics. An important driver of nutrient and C cycling is decomposing biomass produced by forest vegetation. Several studies have demonstrated that understory vegetation, particularly annual plant litter of the herb layer can contribute significantly to nutrient and C cycling in forests. A methodology to obtain comprehensive, consistent and nationally representative estimates of herb layer biomass on NFI plots could provide added value to NFIs by complementing the existing strong basis of biomass estimates of the tree and tall shrub layer. The study was based on data from the Swiss NFI since it covers a large environmental gradient, which extends its applicability to other NFIs. Results Based on data from 405 measurements in nine forest strata, a parsimonious model formulation was identified to predict total and non-ligneous herb layer biomass. Besides herb layer cover, elevation was the main statistically significant explanatory variable for biomass. The regression models accurately predicted biomass based on absolute percentage cover (for total biomass: R2 = 0.65, p = 0; for non-ligneous biomass: R2 = 0.76; p = 0) as well as on cover classes (R2 = 0.83; p = 0; and R2 = 0.79, p = 0), which are typically used in NFIs. The good performance was supported by the verification with data from repeated samples. For the 2nd, 3rd, and 4th Swiss NFI estimates of non-ligneous above-ground herb layer biomass 586.6 ± 7.7, 575.2 ± 7.6, and 586.7 ± 7.9 kg·ha− 1, respectively. Conclusions The study presents a methodology to obtain herb layer biomass estimates based on a harmonized and standardized attribute available in many NFIs. The result of this study was a parsimonious model requiring only elevation data of sample plots in addition to NFI cover estimates to provide unbiased estimates at the national scale. These qualities are particularly important as they ensure accurate, consistent, and comparable results.

Funder

Bundesamt für Umwelt

Publisher

Elsevier BV

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3