Influence of voxel size on forest canopy height estimates using full-waveform airborne LiDAR data

Author:

Wang Cheng,Luo Shezhou,Xi Xiaohuan,Nie Sheng,Ma Dan,Huang Youju

Abstract

Abstract Background Forest canopy height is a key forest structure parameter. Precisely estimating forest canopy height is vital to improve forest management and ecological modelling. Compared with discrete-return LiDAR (Light Detection and Ranging), small-footprint full-waveform airborne LiDAR (FWL) techniques have the capability to acquire precise forest structural information. This research mainly focused on the influence of voxel size on forest canopy height estimates. Methods A range of voxel sizes (from 10.0 m to 40.0 m interval of 2 m) were tested to obtain estimation accuracies of forest canopy height with different voxel sizes. In this study, all the waveforms within a voxel size were aggregated into a voxel-based LiDAR waveform, and a range of waveform metrics were calculated using the voxel-based LiDAR waveforms. Then, we established estimation model of forest canopy height using the voxel-based waveform metrics through Random Forest (RF) regression method. Results and conclusions The results showed the voxel-based method could reliably estimate forest canopy height using FWL data. In addition, the voxel sizes had an important influence on the estimation accuracies (R2 ranged from 0.625 to 0.832) of forest canopy height. However, the R2 values did not monotonically increase or decrease with the increase of voxel size in this study. The best estimation accuracy produced when the voxel size was 18 m (R2 = 0.832, RMSE = 2.57 m, RMSE% = 20.6%). Compared with the lowest estimation accuracy, the R2 value had a significant improvement (33.1%) when using the optimal voxel size. Finally, through the optimal voxel size, we produced the forest canopy height distribution map for this study area using RF regression model. Our findings demonstrate that the optimal voxel size need to be determined for improving estimation accuracy of forest parameter using small-footprint FWL data.

Funder

Natural Science Foundation of Fujian Province

Youth Innovation Promotion Association CAS

Guangxi Natural Science Fund for Innovation Research Team

Special fund for Guangxi Innovation and Driving Development

Publisher

Elsevier BV

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3