Abstract
Abstract
Background
Anoplophora glabripennis (Motschulsky), commonly known as Asian longhorned beetle (ALB), is a wood-boring insect that can cause lethal infestation to multiple borer leaf trees. In Gansu Province, northwest China, ALB has caused a large number of deaths of a local tree species Populus gansuensis. The damaged area belongs to Gobi desert where every single tree is artificially planted and is extremely difficult to cultivate. Therefore, the monitoring of the ALB infestation at the individual tree level in the landscape is necessary. Moreover, the determination of an abnormal phenotype that can be obtained directly from remote-sensing images to predict the damage degree can greatly reduce the cost of field investigation and management.
Methods
Multispectral WorldView-2 (WV-2) images and 5 tree physiological factors were collected as experimental materials. One-way ANOVA of the tree’s physiological factors helped in determining the phenotype to predict damage degrees. The original bands of WV-2 and derived vegetation indices were used as reference data to construct the dataset of a prediction model. Variance inflation factor and stepwise regression analyses were used to eliminate collinearity and redundancy. Finally, three machine learning algorithms, i.e., Random Forest (RF), Support Vector Machine (SVM), Classification And Regression Tree (CART), were applied and compared to find the best classifier for predicting the damage stage of individual P. gansuensis.
Results
The confusion matrix of RF achieved the highest overall classification accuracy (86.2%) and the highest Kappa index value (0.804), indicating the potential of using WV-2 imaging to accurately detect damage stages of individual trees. In addition, the canopy color was found to be positively correlated with P. gansuensis’ damage stages.
Conclusions
A novel method was developed by combining WV-2 and tree physiological index for semi-automatic classification of three damage stages of P. gansuensis infested with ALB. The canopy color was determined as an abnormal phenotype that could be directly assessed using remote-sensing images at the tree level to predict the damage degree. These tools are highly applicable for driving quick and effective measures to reduce damage to pure poplar forests in Gansu Province, China.
Funder
National Key Research & Development Program of China
Beijing’s Science and Technology Planning Project
Subject
Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics,Forestry
Reference39 articles.
1. Bezerra FGS, Aguiar APD, Alvalab RCS, Giarollaa A, Bezerraa KRA, Lima PVPS, do Nascimento FR, Araie E (2020) Analysis of areas undergoing desertification, using EVI2 multi-temporal data based on MODIS imagery as indicator. Ecol Indic 117:106579. https://doi.org/10.1016/j.ecolind.2020.106579
2. Breiman L (2001) Random forests. Mach Learn 45(1):5–32. https://doi.org/10.1023/A:1010933404324
3. Chávez Oyanadel RO, Clevers JGPW (2012) Object-based analysis of 8-bands worldview-2 imagery for assessing health condition of desert trees. Wageningen UR, Wageningen
4. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297. https://doi.org/10.1007/BF00994018
5. Development Core Team R (2018) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献