Abstract
Abstract
Background
Fagus sylvatica forms the treeline across the Apennines mountain range, with an average elevation of 1589 m a.s.l. Previous studies evidenced that the current position of the treeline in the Apennines is heavily depressed as a result of a complex interaction between climatic factors and the past human pressure. In this study we correlated treeline elevation in the fifteen major mountain groups in the Apennines with selected climatic, geomorphological, and human disturbance variables in order to investigate in detail the site-specific features affecting the current treeline distribution.
Results
Treeline elevation was lowest in the North Italy (Apuan Alps), while the highest treeline was found in Central Italy (Simbruini). An absolute maximum treeline elevation of F. sylvatica exceeding 2000 m a.s.l. was found on 13 mountain peaks in Central and Southern Italy. Noteworthy, treeline elevation was largely lower on warmer south-facing slopes compared to northern slopes, with values several hundred meters lower in the Gran Sasso and Velino-Sirente. Although the causes of this pattern are still unknown, we argue that treeline elevation on south-facing slopes may be limited by the combination of climatic constraints (i.e. summer drought) and human disturbance. Evidence of a pervasive anthropogenic effect depressing treeline elevation was found in the North (Apuan Alps) Central (Gran Sasso, Velino-Sirente, Sibillini) and Southern part of Apennines (Pollino). By contrast, treeline elevation of the Laga, Simbruini, and Orsomarso mountain groups appears less affected by past anthropogenic disturbance. Finally, we recorded in the several mountain groups (i.e. Majella, Marsicani and Pollino) the coexistence of very depressed treelines just a few kilometers away from much higher treelines, among the highest ever recorded for F. sylvatica.
Conclusions
Finally, we argue that F. sylvatica treeline across the Apennines is locally shaped both by the interaction of low temperatures experienced by the species in its earliest life stages in snow-free open spaces with summer soil water depletion and human disturbance.
Subject
Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics,Forestry
Reference50 articles.
1. Adamoli L, Calamita F, Pizzi A (2012) Note Illustrative del Foglio 349 “G. Sasso” della Carta Geologica d'Italia alla scala 1:50.000. ISPRA, Rome
2. Allegrezza M, Ballelli S, Mentoni M, Olivieri M, Ottaviani C, Pesaresi S, Tesei G (2013) Biodiversity in the Sibillini Mountain range (Sibillini National Park, central Apennines): the example of Piè Vettore. Plant Sociol 50:57–89
3. Allegrezza M, Corti G, Cocco S, Pesaresi S, Chirico GB, Saracino A, Bonanomi G (2016) Microclimate buffering and fertility island formation during Juniperus communis ontogenesis modulate competition–facilitation balance. J Veg Sci 27:616–627
4. Allevato E, Saulino L, Cesarano G, Chirico GB, D'Urso G, Falanga Bolognesi S, Rita A, Rossi S, Saracino A, Bonanomi G (2019) Canopy damage by spring frost in European beech along the Apennines: effect of latitude, altitude and aspect. Remote Sens Environ 225:431–440
5. Almagià R (1959) L’Italia. UTET, Torino
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献