Relationship between strength development and pozzolanic reactions in lime stabilized kaolinite

Author:

Ahmadullah TasneemORCID,Chrysochoou Maria

Abstract

AbstractThis study contributes to the quantitative understanding of kaolinite reactions with lime over two years. Unconfined Compressive Strength (UCS) increased linearly with time, doubling within one year, followed by a 14% decrease. Spectroscopic analysis of the system was performed at ten curing times (0, 7, 28, 90, 120, 180, 270, 360, 540 and 720 days) using Thermogravimetric Analysis (TGA), X-Ray Diffraction (XRD) and 2Nuclear Magnetic Resonance (NMR). Both TGA and XRD showed decrease of portlandite up to 180 days; complete consumption appears to have occurred by 270 days. TGA curves indicated an increase in hydration products in the first 360 days which followed a linear trend with UCS increase. No hydration products were observable by either XRD or NMR during that timeframe and no detectable changes in the kaolinite content either. After 360 days, growth in the hydrates in TGA slowed, and XRD, NMR showed a rapid increase of stratlingite (Ca2Al2SiO7∙8H2O) up to 720 days along with a decrease in the kaolinite signal. Collectively, these results point to two phases in kaolinite dissolution: the first phase, up to about 360 days, is incongruent, characterized by preferential release of Si or Al and portlandite consumption, leading to amorphous Calcium Silicate Hydrate (CSH) or an Afm phase, calcium monosulphoaluminate hydrate (CAH) formation. The second phase involves congruent dissolution and formation of Calcium Alumino Silicate Hydrate (CASH). It is hypothesized that CSH or CAH to CASH transformation occurs in the second stage, causing a disturbance in the cementitious matrix and loss in strength.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Reference44 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3