The effect of temperature on the mechanical behavior of Berea sandstone under confining pressure: experiments

Author:

Iftikhar Ch Mohammad Abbas,Khan Akhtar S.,Nambori Venkata

Abstract

AbstractFor the first time, axial and circumferential (diametral) strains are measured directly on Berea sandstone cylindrical samples at different high temperatures as a function of confining pressure. The maximum compressive principal stress was in the direction perpendicular to the bedding plane. Tri-axial compression tests have been conducted under confining pressures ranging from atmospheric pressure to 12,000 psi “82.73 MPa” (gage), and the temperature was varied from room temperature (RT) to 250°F (121.11 °C). In all the experiments, specimens are dry, and no pore pressure is applied. Uniaxial axial force (100 lbs/min or 444.82 N/min) and strains in the three directions ($$\varepsilon$$ ε 1, $$\varepsilon$$ ε 2, $$\varepsilon$$ ε 3) is directly measured from the strain gages mounted on the specimen; hence the study reflects the behavior of the Berea sandstone up to the initiation of the failure only. The experimental observations involving yield, failure, transition from brittle to ductile behavior, and their dependence on temperature and confining pressure are presented. Parameters like ductility and dilatancy (reflecting volumetric behavior before failure) and their variation with temperature and confining pressure are given. The initial yield and failure of Berea sandstone are presented in terms of the generalized von-Mises criteria, i.e., variation of octahedral shear stress ("Image missing") with the mean stress. The loads at yield and failure are found to decrease with increasing temperature and augment with increasing confining pressure. The ductility and dilatancy reduction are computed using measured strains with increasing temperature. With an increase in temperature, the volume decreases first, partly due to the initial closure of micro cracks and voids, then increases due to generation of additional microcracks and voids (damage). There is less volume decrease in the uniaxial test response at higher temperature as compared to the corresponding ambient temperature response. A monotonic increase in the octahedral shear stress at yield and failure is observed with increasing confining pressure.

Publisher

Springer Science and Business Media LLC

Subject

Energy (miscellaneous),Mechanics of Materials,Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3