Abstract
AbstractThe main objective of the current investigation is to study the dynamic behaviour of a 3-pile group with different loading direction under coupled (horizontal and rocking) excitations. To accomplish this objective, machine-induced field excitation tests are conducted on small-scale hollow steel piles. The 3-pile group is driven into the ground in a triangular arrangement with 3d spacing. Two different soil-pile setups, i.e., Pile Group-I and Pile Group-II, are created based on dynamic force directions. In the case of Pile Group-I, the forces are applied to the direction of the median of the triangle, and for Pile Group-II, the forces are applied to other directional loads. From the test results, it is found that the resonant peaks of horizontal and rocking amplitudes for Pile Group-I are lower than Pile Group-II. In the case of resonant frequencies, the values of Pile Group-I are observed to be the same or a little bit higher as compared to Pile Group-II. It is found that the dynamic soil-pile-soil interaction effect is more prominent for Pile Group-II than for Pile Group-I. For numerical investigation, the continuum approach method is utilised with the inclusion of a dynamic group interaction factor to predict the dynamic coupled responses in terms of frequency and amplitude for these two soil-pile setups. To understand the behaviour of pile groups, boundary zone parameters and variations of impedance parameters (stiffness and damping) with operating frequencies are also measured using this theoretical approach.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献