Author:
Ntsekhe Mpiko,Mayosi Bongani M,Gumbo Tawanda
Abstract
Abstract
Background
The purpose of this study was to quantify the heterogeneous distribution of echodensities in the pericardial fluid of patients with tuberculous pericarditis using echocardiography and fractal analysis, and to determine whether there were differences in the fractal dimensions of effusive-constrictive and effusive non-constrictive disease.
Methods
We used fractal geometry to quantify the echocardiographic densities in patients who were enrolled in the
I
nvestigation of the
M
anagement of
P
ericarditis
i
n
Africa
(IMPI Africa) Registry. Sub-costal and four chamber images were included in the analysis if a minimum of two clearly identified fibrin strands were present and the quality of the images were of a standard which allowed for accurate measurement of the fractal dimension. The fractal dimension was calculated as follows: Df = limlog N(s)/[log (l/s)], where Df is the box counting fractal dimension of the fibrin strand, s is the side length of the box and N(s) is the smallest number of boxes of side length s to cover the outline of the object being measured. We compared the fractal dimension of echocardiographic findings in patients with effusive constrictive pericarditis to effusive non-constrictive pericardial effusion using the non-parametric Mann–Whitney test.
Results
Of the 14 echocardiographs from 14 participants that were selected for the study, 42.8% (6/14) of images were subcostal views while 57.1% (8/14) were 4-chamber views. Eight of the patients had tuberculous effusive constrictive pericarditis while 6 had tuberculous effusive non-constrictive pericarditis. The mean fractal dimension Df was 1.325 with a standard deviation (SD) of 0.146. The measured fibrin strand dimension exceeded the topological dimension in all the images over the entire range of grid scales with a correlation coefficient (r2) greater than 0.8 in the majority. The fractal dimension of echodensities was 1.359 ± 0.199 in effusive constrictive pericarditis compared to 1.330 ± 0.166 in effusive non-constrictive pericarditis (p = 0.595).
Conclusions
The echocardiographic densities in tuberculous pericardial effusion have a fractal geometrical dimension which is similar in pure effusive and effusive constrictive disease.
Publisher
Springer Science and Business Media LLC
Subject
Cardiology and Cardiovascular Medicine,Radiology Nuclear Medicine and imaging,General Medicine
Reference33 articles.
1. Wann S, Passen E: Echocardiography in Pericardial Disease. J Am Soc Echocardiogr. 2008, 21 (1): 7-13. 10.1016/j.echo.2007.11.003
2. Martin R, Bowden R, Filly K, Popp R: Intrapericardial abnormalities in patients with pericardial effusion. Findings by two-dimensional echocardiography. Circulation. 1980, 61 (3): 568-572. 10.1161/01.CIR.61.3.568
3. George S, Salama AL, Uthaman B, Cherian G: Echocardiography in differentiating tuberculous from chronic idiopathic pericardial effusion. Heart. 2004, 90 (11): 1338-1339. 10.1136/hrt.2003.020081
4. Ku CS, Chiou KR, Lin SL, Liu CP, Chaing HT: Echocardiographic features of tuberculous pericarditis. J Chin Med Assoc. 2003, 66 (10): 613-616.
5. Falconer K: Fractal Geometry: Mathematical Foundations and Applications. Chichester: John Wiley & Sons Ltd, 1990.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献