Author:
Gligorova Suzana,Agrusta Marco
Abstract
Abstract
Background
High-rate pacing is a valid stress test to be used in conjunction with echocardiography; it is independent of physical exercise and does not require drug administration. There are two main applications of pacing stress in the echo lab: the noninvasive detection of coronary artery disease through induction of a regional transient dysfunction; and the assessment of contractile reserve through peak systolic pressure/ end-systolic volume relationship at increasing heart rates to assess global left ventricular contractility.
Methods
The pathophysiologic rationale of pacing stress for noninvasive detection of coronary artery disease is obvious, with the stress determined by a controlled increase in heart rate, which is a major determinant of myocardial oxygen demand, and thereby tachycardia may exceed a fixed coronary flow reserve in the presence of hemodynamically significant coronary artery disease. The use of pacing stress echo to assess left ventricular contractile reserve is less established, but promising. Positive inotropic interventions are mirrored by smaller end-systolic volumes and higher end-systolic pressures. An increased heart rate progressively increases the force of ventricular contraction (Bowditch treppe or staircase phenomenon). To build the force-frequency relationship, the force is determined at different heart rate steps as the ratio of the systolic pressure (cuff sphygmomanometer)/end-systolic volume index (biplane Simpson rule). The heart rate is determined from ECG.
Conclusion
Two-dimensional echocardiography during pacing is a useful tool in the detection of coronary artery disease. Because of its safety and ease of repeatability noninvasive pacing stress echo can be the first-line stress test in patients with permanent pacemaker.
The force-frequency can be defined as up- sloping (normal) when the peak stress pacing systolic pressure/end-systolic volume index is higher than baseline and intermediate stress values, biphasic with an initial up- sloping followed by a later down-sloping trend, or flat or negative when peak stress pacing systolic pressure/end-systolic volume index is equal or lower than baseline stress values. This approach is certainly highly feasible and allows a conceptually immaculate definition of contractility with prognostic usefulness, but its therapeutic implications remains to be established. Bowditch treppe, assessed with pacing stress, can be used to assess the optimal stimulation frequency and to optimise the patient's chronotropic response in programming rate-adaptive pacemakers.
Publisher
Springer Science and Business Media LLC
Subject
Cardiology and Cardiovascular Medicine,Radiology, Nuclear Medicine and imaging,General Medicine
Reference44 articles.
1. Picano E: Stress Echocardiography. 2003, Heidelberg: Springer Verlag, 4
2. Spencer KT, Thurn J, Bednarz J, Linder GS, Connor B, Lang RM: Transnasal Transesophageal Stress Echocardiography. Echocardiography. 1998, 15 (5): 467-472.
3. Goldberg L, Hagies P, Grigorov V: Transoesophageal atrial pacing stress echocardiography in coronary artery disease: role, principles and methodology. Cardiovasc J S Afr. 2004, 15 (2): 81-87.
4. Anselmi M, Golia G, Rossi A, Zeni P, Gallo A, Marino P, Zardini P: Feasibility and safety of transoesophageal atrial pacing stress echocardiography in patients with known or suspected coronary artery disease. J Am Coll Cardiol. 2003, 92,12: 1384-1388.
5. Bollano E, Waagstein F, Omerovic E: Stress echocardiography using transesophageal atrial pacing in rats. Am Soc Echocardiogr. 2003, 16 (4): 326-332. 10.1016/S0894-7317(02)74535-5.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献