Network construction of aberrantly expressed miRNAs and their target mRNAs in ventricular myocardium with ischemia–reperfusion arrhythmias

Author:

Tang Jian,Gao Hong,Liu Yanqiu,Song Jing,Feng Yurong,Wang Guilong,He Youqin

Abstract

Abstract Background Hypothermic ischemia-reperfusion arrhythmia remains the main factor affecting cardiac resuscitation under cardiopulmonary bypass. Existing research shows that certain miRNAs exhibit significantly different expressions and effects in arrhythmias, however, the effect of miRNAs on the progression of hypothermic ischemic–reperfusion arrhythmias (RA) and its potential mechanism remain to be further explored. Methods Sprague-Dawley (SD) rats were randomly divided into two groups (n = 8): a normal control group (Group C) and a hypothermic ischemia-reperfusion group (Group IR), which were used to establish a Langendorff isolated cardiac perfusion model. According to the arrhythmia scoring system, rats in group IR were divided into a high-risk group (IR-H) and a low-risk group (IR-L). miRNAs expression profiles of ventricular myocardium with global hypothermic ischemia–reperfusion and those of ventricular myocardium with hypothermic ischemia–RA were established through high-throughput sequencing. Furthermore, the aberrantly expressed miRNAs in myocardium with and without hypothermic ischemia–RA were screened and verified. The target genes of these aberrantly expressed miRNAs were predicted using RNAhybrid and MiRanda software. Based on Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, we determined the mRNA targets associated with these miRNAs and studied the miRNA–mRNA interaction during the cardiovascular disease progression. The aberrantly expressed miRNAs related to hypothermic ischemia–RA were validated by Real-time Quantitative polymerase chain reaction (RT-qPCR). Results Eight significantly aberrantly expressed miRNAs (rno-miR-122-5p, rno-miR-429, novel_miR-1, novel_miR-16, novel_miR-17, novel_miR-19, novel_miR-30, and novel_miR-43) were identified, among which six were up-regulated and two were down-regulated. Moreover, target genes and signaling pathways associated with these aberrantly expressed miRNAs were predicted and analyzed. The miRNA–mRNA interaction network graph showed that GJA1 gene was considered as the target of novel_miR-17. Conclusions Aberrantly expressed miRNAs were possibly associated with the formation mechanism of hypothermic ischemia–RA. Specific miRNAs, such as novel_miR-17 and rno-miR-429 are probably new potential targets for further functional studies of hypothermic ischemia–RA.

Publisher

Springer Science and Business Media LLC

Subject

Cardiology and Cardiovascular Medicine,General Medicine,Surgery,Pulmonary and Respiratory Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3