Graft protective effects and donor-specific antibody suppression by CD4+CD25+Foxp3+ regulatory T cell induced by HMG-CoA reductase inhibitor rosuvastatin in a murine heart transplant model

Author:

Iguchi Kazuhito,Yamamoto Yasuto,Uchiyama Masateru,Masaoka Hisanori,Nakamura Masahiro,Shizuka Hiroyuki,Imazuru Tomohiro,Shimokawa Tomoki

Abstract

Abstract Background We previously demonstrated that the hydroxymethylglutaryl-CoA (HMG-CoA) reductase inhibitor (statins) play an important role in the regulation of alloimmune responses. However, little is known regarding the effects of statin on allograft protection or donor-specific antibodies (DSA). In this study, we investigated the graft-protective and immunomodulatory effects of rosuvastatin in a model of fully major histocompatibility complex-mismatched murine cardiac allograft transplantation. Methods CBA mice underwent transplantation of C57BL/6 (B6) hearts and received 50 and 500 μg/kg/day of rosuvastatin from the day of transplantation until seven days after the completion of transplantation. To confirm the requirement for regulatory T cells (Tregs), we administered an anti-interleukin-2 receptor alpha antibody (PC-61) to rosuvastatin-treated CBA recipients. Additionally, histological and fluorescent staining, cell proliferation analysis, flow cytometry, and DSA measurements were performed. Results CBA recipients with no treatment rejected B6 cardiac graft acutely (median survival time [MST], 7 days). CBA mice treated with 500 μg/kg/day of rosuvastatin prolonged allograft survival (MSTs, 77 days). Fluorescent staining studies showed that rosuvastatin-treated recipients had strong aggregation of CD4+Foxp3+ cells in the myocardium and around the coronary arteries of cardiac allografts two weeks after grafting. Flow cytometry studies performed two weeks after transplantation showed an increased number of splenic CD4+CD25+Foxp3+ T cells in rosuvastatin-treated recipients. The addition of rosuvastatin to mixed leukocyte cultures suppressed cell proliferation by increasing the number of CD4+CD25+Foxp3+ Tregs. Additionally, Tregs suppressed DSA production in rosuvastatin-treated recipients. Conclusion Rosuvastatin treatment may be a complementary graft-protective strategy for suppressing DSA production in the acute phase, driven by the promotion of splenic and graft-infiltrating CD4+CD25+Foxp3+ Tregs.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3