Mean computed tomography value to predict spread through air spaces in clinical N0 lung adenocarcinoma
-
Published:2024-04-23
Issue:1
Volume:19
Page:
-
ISSN:1749-8090
-
Container-title:Journal of Cardiothoracic Surgery
-
language:en
-
Short-container-title:J Cardiothorac Surg
Author:
Yamamoto Marino,Tamura Masaya,Miyazaki Ryohei,Okada Hironobu,Wada Noriko,Toi Makoto,Murakami Ichiro
Abstract
Abstract
Background
The aim of this study was to assess the ability of radiologic factors such as mean computed tomography (mCT) value, consolidation/tumor ratio (C/T ratio), solid tumor size, and the maximum standardized uptake (SUVmax) value by F-18 fluorodeoxyglucose positron emission tomography to predict the presence of spread through air spaces (STAS) of lung adenocarcinoma.
Methods
A retrospective study was conducted on 118 patients those diagnosed with clinically without lymph node metastasis and having a pathological diagnosis of adenocarcinoma after undergoing surgery. Receiver operating characteristics (ROC) analysis was used to assess the ability to use mCT value, C/T ratio, tumor size, and SUVmax value to predict STAS. Univariate and multiple logistic regression analyses were performed to determine the independent variables for the prediction of STAS.
Results
Forty-one lesions (34.7%) were positive for STAS and 77 lesions were negative for STAS. The STAS positive group was strongly associated with a high mCT value, high C/T ratio, large solid tumor size, large tumor size and high SUVmax value. The mCT values were − 324.9 ± 19.3 HU for STAS negative group and − 173.0 ± 26.3 HU for STAS positive group (p < 0.0001). The ROC area under the curve of the mCT value was the highest (0.738), followed by SUVmax value (0.720), C/T ratio (0.665), solid tumor size (0.649). Multiple logistic regression analyses using the preoperatively determined variables revealed that mCT value (p = 0.015) was independent predictive factors of predicting STAS. The maximum sensitivity and specificity were obtained at a cutoff value of − 251.8 HU.
Conclusions
The evaluation of mCT value has a possibility to predict STAS and may potentially contribute to the selection of suitable treatment strategies.
Publisher
Springer Science and Business Media LLC
Reference26 articles.
1. Fan L, Wang Y, Zhou Y, Li Q, Yang W, Wang S, Shan F, Zhang X, Shi J, Chen W, Liu SY. Lung cancer screening with low-dose CT: baseline screening results in Shanhai. Acad Radiol. 2019;26(10):1283–91. 2. Postmus PE, Kerr KM, Oudkerk M, Senan S, Waller DA, Vansteenkiste J, Escriu C, Peters S, Committee EG. Early and locally advanced non-small-cell lung cancer (NSCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017;28(suppl_4):iv1–21. 3. Nomori H, Mori T, Shiraishi A, Fujino K, Sato Y, Ito T, Suzuki M. Long-term prognosis after segmentectomy for cT1 N0 M0 non-small cell lung cancer. Ann Thorac Surg. 2019;107(5):1500–6. 4. Suzuki K, Koike T, Asakawa T, Kusumoto M, Asamura H, Nagai K, Tada H, Mitsudomi T, Tsuboi M, Shibata T, Fukuda H, Kato H, Japan Lung Cancer Surgical Study G. A prospective radiological study of thin-section computed tomography to predict pathological noninvasiveness in peripheral clinical IA lung cancer (Japan Clinical Oncology Group 0201). J Thorac Oncol. 2011;6(4):751–6. 5. Nicholson AG, Tsao MS, Beasley MB, Borczuk AC, Brambilla E, Cooper WA, Dacic S, Jain D, Kerr KM, Lantuejoul S, Noguchi M, Papotti M, Rekhtman N, Scagliotti G, van Schil P, Sholl L, Yatabe Y, Yoshida A, Travis WD. The 2021 WHO classification of lung tumors: impact of advances since 2015. J Thorac Oncol. 2022;17(3):362–87.
|
|