Non-malignant pathological results from CT-guided biopsy for pulmonary nodules: a predictive model for identifying false-negative results

Author:

Wang Xu-Zhou,Wang Jing-Ya,Meng Tao,Shi Yi-Bing,Sun Jin-Jun

Abstract

Abstract Background Computed tomography (CT)-guided biopsy (CTB) procedures are commonly used to aid in the diagnosis of pulmonary nodules (PNs). When CTB findings indicate a non-malignant lesion, it is critical to correctly determine false-negative results. Therefore, the current study was designed to construct a predictive model for predicting false-negative cases among patients receiving CTB for PNs who receive non-malignant results. Materials and methods From January 2016 to December 2020, consecutive patients from two centers who received CTB-based non-malignant pathology results while undergoing evaluation for PNs were examined retrospectively. A training cohort was used to discover characteristics that predicted false negative results, allowing the development of a predictive model. The remaining patients were used to establish a testing cohort that served to validate predictive model accuracy. Results The training cohort included 102 patients with PNs who showed non-malignant pathology results based on CTB. Each patient underwent CTB for a single nodule. Among these patients, 85 and 17 patients, respectively, showed true negative and false negative PNs. Through univariate and multivariate analyses, higher standardized maximum uptake values (SUVmax, P = 0.001) and CTB-based findings of suspected malignant cells (P = 0.043) were identified as being predictive of false negative results. Following that, these two predictors were combined to produce a predictive model. The model achieved an area under the receiver operating characteristic curve (AUC) of 0.945. Furthermore, it demonstrated sensitivity and specificity values of 88.2% and 87.1% respectively. The testing cohort included 62 patients, each of whom had a single PN. When the developed model was used to evaluate this testing cohort, this yielded an AUC value of 0.851. Conclusions In patients with PNs, the predictive model developed herein demonstrated good diagnostic effectiveness for identifying false-negative CTB-based non-malignant pathology data.

Funder

Jiangsu Important Subject Development

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3