Extension of interval between adjacent pulse delivery cycles to deal with myocardial ischemia by intravascular lithotripsy: case report

Author:

Lv HeORCID,Li XinyuORCID,Ren ZengduojiORCID,Qin ZhiluORCID,Fu ChunyingORCID,Fu QiangORCID

Abstract

Abstract Background Intravascular lithotripsy (IVL) represents a novel approach in the management of coronary calcification. This technique employs acoustic pressure waves, generated by a shockwave balloon, to effectively fracture both superficial and deep calcification in situ. The efficacy and safety of IVL have been convincingly demonstrated through the Disrupt CAD I-IV studies. While IVL is associated with the occurrence of atrial and ventricular arrhythmias, there is no evidence to indicate it causes myocardial ischemia. Case Description A 71-year-old man was admitted presenting with chest pain. His previous coronary angiography revealed stenosis and calcification in the left anterior descending branch. An attempt to predilate the lesion using two Lacrosse non-slip element balloons was unsuccessful. Ventricular premature beats and transient ST-segment depression were captured during the utilization of IVL. The operator gradually extended the pulse emission interval across two consecutive cycles to mitigate myocardial ischemia. Notably, when the interval reached 30s, the patient had no chest pain or ST-segment changes. Subsequent images of intravascular ultrasound confirmed calcification ruptures. Therapeutic intervention included the placement of a stent and the application of a drug-coated balloon in the left anterior descending branch. A telephonic follow-up six months later indicated the patient had no discomfort. Conclusions This case underscores the effectiveness of gradually extending the pulse emission interval as a strategic complement to the clinical application of IVL. In certain clinical scenarios, it may become imperative to suspend the pulse delivery to improve myocardial blood supply.

Funder

National Natural Science Foundation of China

Shenyang Science and Technology Bureau of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3