Abstract
AbstractWe report on the development and implementation of an optical frequency-domain reflectometer (OFDR) sensing platform. OFDR allows to measure changes in strain and temperature using optical fibers with a length of several tens of meters with very high spatial resolution. We discuss the operation principles and challenges to implement an OFDR system using optical homodyne detection based on a dual-polarization 90° optical hybrid. Our setup exhibits polarization and phase diversity, fully automated data acquisition and data processing using a LabVIEW-based implemented software environment. Using an optical hybrid enables to discriminate phase, amplitude and polarization by interfering the Rayleigh scatter signal and a local oscillator with four 90° phase stepped interferences between the two signals. Without averaging and a fast acquisition time of 230 ms, our preliminary results show a spatial resolution of 5 cm and a temperature resolution of about 0.1 Kelvin on a 3 m-long fiber.
Funder
Romanian Ministry of Education and Research
ANID Chilean National Agency for Research and Development
Publisher
Springer Science and Business Media LLC
Subject
Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献