Stimulated Raman scattering simulation for imaging optimization

Author:

Zada LironORCID,Fokker Bart,Leslie Heather A.,Vethaak A. Dick,de Boer Johannes F.,Ariese Freek

Abstract

AbstractTwo simulation programs of a stimulated Raman scattering microscopy (SRS) imaging system with lock-in amplifier (LIA) detection were developed. SRS is an imaging technique based on the vibrational Raman cross-section as the contrast mechanism and enables fast, label-free imaging. Most SRS implementations are based on LIA detection of a modulated signal. However, building and operating such SRS set-ups still poses a challenge when selecting the LIA parameter settings for optimized acquisition speed or image quality. Moreover, the type of sample, e.g. a sparse sample vs. a densely packed sample, the required resolution as well as the Raman cross-section and the laser powers affect the parameter choice.A simulation program was used to find these optimal parameters. The focal spot diameters of the individual lasers (pump and Stokes) were used to estimate the effective SRS signal focal spot and the (optical) spatial resolution. By calibrating the signal and noise propagation through an SRS system for a known molecule, we estimated the signal and noise input to the LIA. We used a low pass filter model to simulate the LIA behavior in order to find the optimal parameters (i.e. filter order and time constant).Optimization was done for either image quality (expressed as contrast to noise ratio) or acquisition time. The targeted object size was first determined as a measure for the required resolution. The simulation output consisted of the LIA parameters, pixel dwell time and contrast to noise ratio.In a second simulation we evaluated SRS imaging based on the same principles as the optimal setting simulation, i.e. the signals were propagated through an imaging system and LIA detection. The simulated images were compared to experimental SRS images of polystyrene beads.Finally, the same software was used to simulate multiplexed SRS imaging. In this study we modeled a six-channel frequency-encoded multiplexed SRS system demodulated with six LIA channels. We evaluated the inter-channel crosstalk as a function of chosen LIA parameters, which in multiplex SRS imaging also needs to be considered.These programs to optimize the contrast to noise ratio, acquisition speed, resolution and crosstalk will be useful for operating stimulated Raman scattering imaging setup, as well as for designing novel setups.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3