Privacy and artificial intelligence: challenges for protecting health information in a new era

Author:

Murdoch Blake

Abstract

Abstract Background Advances in healthcare artificial intelligence (AI) are occurring rapidly and there is a growing discussion about managing its development. Many AI technologies end up owned and controlled by private entities. The nature of the implementation of AI could mean such corporations, clinics and public bodies will have a greater than typical role in obtaining, utilizing and protecting patient health information. This raises privacy issues relating to implementation and data security. Main body The first set of concerns includes access, use and control of patient data in private hands. Some recent public–private partnerships for implementing AI have resulted in poor protection of privacy. As such, there have been calls for greater systemic oversight of big data health research. Appropriate safeguards must be in place to maintain privacy and patient agency. Private custodians of data can be impacted by competing goals and should be structurally encouraged to ensure data protection and to deter alternative use thereof. Another set of concerns relates to the external risk of privacy breaches through AI-driven methods. The ability to deidentify or anonymize patient health data may be compromised or even nullified in light of new algorithms that have successfully reidentified such data. This could increase the risk to patient data under private custodianship. Conclusions We are currently in a familiar situation in which regulation and oversight risk falling behind the technologies they govern. Regulation should emphasize patient agency and consent, and should encourage increasingly sophisticated methods of data anonymization and protection.

Funder

Office of the Privacy Commissioner of Canada

Publisher

Springer Science and Business Media LLC

Subject

Health Policy,Health (social science),Issues, ethics and legal aspects

Reference48 articles.

1. Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, Wang Y, Dong Q, Shen H, Wang Y. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol. 2017;2(4):230–43.

2. Johnson KW, Soto JT, Glicksberg BS, Shameer K, Miotto R, Ali M, Ashley E, Dudley JT. Artificial intelligence in cardiology. J Am Coll Cardiol. 2018;71(23):2668–79.

3. Radiological Society of North America. Artificial intelligence shows potential for triaging chest X-rays. 2019. https://www.rsna.org/en/news/2019/January/AI-for-chest-x-rays. Accessed 15 Mar 2021.

4. European Society of Cardiology. Machine learning overtakes humans in predicting death or heart attack. EurekAlert! 2019. https://eurekalert.org/pub_releases/2019-05/esoc-mlo050719.php. Accessed 15 Mar 2021.

5. Armitage H. Artificial intelligence rivals radiologists in screening X-rays for certain diseases. Stanford Medicine News Center. 2018. https://med.stanford.edu/news/all-news/2018/11/ai-outperformed-radiologists-in-screening-x-rays-for-certain-diseases.html. Accessed 15 Mar 2021.

Cited by 255 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3