Artificial Intelligence to support ethical decision-making for incapacitated patients: a survey among German anesthesiologists and internists

Author:

Benzinger Lasse,Epping Jelena,Ursin Frank,Salloch Sabine

Abstract

Abstract Background Artificial intelligence (AI) has revolutionized various healthcare domains, where AI algorithms sometimes even outperform human specialists. However, the field of clinical ethics has remained largely untouched by AI advances. This study explores the attitudes of anesthesiologists and internists towards the use of AI-driven preference prediction tools to support ethical decision-making for incapacitated patients. Methods A questionnaire was developed and pretested among medical students. The questionnaire was distributed to 200 German anesthesiologists and 200 German internists, thereby focusing on physicians who often encounter patients lacking decision-making capacity. The questionnaire covered attitudes toward AI-driven preference prediction, availability and utilization of Clinical Ethics Support Services (CESS), and experiences with ethically challenging situations. Descriptive statistics and bivariate analysis was performed. Qualitative responses were analyzed using content analysis in a mixed inductive-deductive approach. Results Participants were predominantly male (69.3%), with ages ranging from 27 to 77. Most worked in nonacademic hospitals (82%). Physicians generally showed hesitance toward AI-driven preference prediction, citing concerns about the loss of individuality and humanity, lack of explicability in AI results, and doubts about AI’s ability to encompass the ethical deliberation process. In contrast, physicians had a more positive opinion of CESS. Availability of CESS varied, with 81.8% of participants reporting access. Among those without access, 91.8% expressed a desire for CESS. Physicians' reluctance toward AI-driven preference prediction aligns with concerns about transparency, individuality, and human-machine interaction. While AI could enhance the accuracy of predictions and reduce surrogate burden, concerns about potential biases, de-humanisation, and lack of explicability persist. Conclusions German physicians frequently encountering incapacitated patients exhibit hesitance toward AI-driven preference prediction but hold a higher esteem for CESS. Addressing concerns about individuality, explicability, and human-machine roles may facilitate the acceptance of AI in clinical ethics. Further research into patient and surrogate perspectives is needed to ensure AI aligns with patient preferences and values in complex medical decisions.

Funder

Else Kröner-Fresenius-Stiftung

Medizinische Hochschule Hannover (MHH)

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3