Thermal behavior and indirect life test of large-area OLED lighting panels

Author:

Pang Huiqing,Michalski Lech,Weaver Michael S,Ma Ruiqing,Brown Julie J

Abstract

Abstract In this work, we studied the thermal behavior and addressed the challenges of life testing of large area OLED devices. In particular, we developed an indirect method to accurately calculate the life time of large-area OLED lighting panels without physically life-testing the panels. Using small area OLEDs with structures identical with the tested panels, we performed the life tests at desired driving current densities at different temperatures and extracted the relationship between junction temperature and the lifetime for the particular device. By measuring the panel junction temperature during operation under the same current density and using the life time measured on small area test devices, we determine the lifetime of the panels based on the thermal dependence. We test this methodology by predicting the life time of white PHOLED panels and then physically testing the panels. The typical result for the lifetime to 80% of the initial luminance (LT80) of the panel at a constant dc current density of 10 mA/cm2 (3800 cd/m2), was predicted to be 526 hours in good agreement with the actual life-test at 10 mA/cm2 of 512 hrs. This good agreement, confirmed in different experiments, validates this novel technique as a practical life time predictor of large-area OLED lighting panels in a time saving manner.

Publisher

Springer Science and Business Media LLC

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Manipulation of Hole and Exciton Distributions in Organic Light-Emitting Diodes with Dual Emission Layers;Electronic Materials Letters;2023-08-23

2. An investigation on the cyclic temperature-dependent performance behaviors of ultrabright air-stable QLEDs;Scientific Reports;2023-08-05

3. Prediction of OLED Luminance Using Impedance Measurements;IEEE Transactions on Industry Applications;2022-01

4. OLED luminance prediction using impedance measurements;2020 IEEE Industry Applications Society Annual Meeting;2020-10-10

5. Liquid Crystal Displays;Introduction to Flat Panel Displays;2020-06-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3