Combined application of single-energy metal artifact reduction and reconstruction techniques in patients with Cochlear implants

Author:

Wei Fanqin,Li Jiahui,Zhou Chunxiang,Li Yun,Wang Xianren,Huang Bixue,Sun Qiyang,Xiong GuanxiaORCID

Abstract

Abstract Background The purpose of this study was to develop an effective method of reducing metal artifacts in cochlear implant (CI) electrodes. Methods The temporal bones of 30 patients (34 ears) after CI were examined with 320-detector row computed tomography, which was evaluated by two senior radiologists using a double-blind method. Noise, artifact index, signal-to-noise ratio, and the subjective image quality score were compared before versus after using single-energy metal artifact reduction (SEMAR). The electrode position, single electrode visibility, and electrode count were evaluated using SEMAR combined with either multi-planar reconstruction (MPR) or maximum intensity projection. Results The two radiologists’ measurements had good consistency. SEMAR significantly reduced the image noise and artifacts index and significantly improved the signal-to-noise ratio and subjective image quality score (P < 0.01). The combination of SEMAR with MPR was conducive to accurate assessment of electrode position and single-electrode visibility. The combination of SEMAR with MIP facilitated accurate and intuitive matching of the assessed electrode count with the number of electrodes implanted during the operation (P = 0.062). Conclusion SEMAR significantly reduces metal artifacts generated by CI electrodes and improves the quality of computed tomography images. The combination of SEMAR with MPR and maximum intensity projection is beneficial for evaluating the position and number of CI electrodes.

Funder

National Natural Science Foundation of China

Instituto Nacional de Ciência e Tecnologia Centro de Estudos das Adaptações da Biota Aquática da Amazônia

Guangdong Basic and Applied Basic Research Foundation

Publisher

Springer Science and Business Media LLC

Subject

Otorhinolaryngology,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3