Abstract
Abstract
Background
Adequate personal protective equipment is needed to reduce the rate of transmission of COVID-19 to health care workers. Otolaryngology groups are recommending a higher level of personal protective equipment for aerosol-generating procedures than public health agencies. The objective of the review was to provide evidence that a.) demonstrates which otolaryngology procedures are aerosol-generating, and that b.) clarifies whether the higher level of PPE advocated by otolaryngology groups is justified.
Main body
Health care workers in China who performed tracheotomy during the SARS-CoV-1 epidemic had 4.15 times greater odds of contracting the virus than controls who did not perform tracheotomy (95% CI 2.75–7.54). No other studies provide direct epidemiological evidence of increased aerosolized transmission of viruses during otolaryngology procedures. Experimental evidence has shown that electrocautery, advanced energy devices, open suctioning, and drilling can create aerosolized biological particles. The viral load of COVID-19 is highest in the upper aerodigestive tract, increasing the likelihood that aerosols generated during procedures of the upper aerodigestive tract of infected patients would carry viral material. Cough and normal breathing create aerosols which may increase the risk of transmission during outpatient procedures. A significant proportion of individuals infected with COVID-19 may not have symptoms, raising the likelihood of transmission of the disease to inadequately protected health care workers from patients who do not have probable or confirmed infection. Powered air purifying respirators, if used properly, provide a greater level of filtration than N95 masks and thus may reduce the risk of transmission.
Conclusion
Direct and indirect evidence suggests that a large number of otolaryngology-head and neck surgery procedures are aerosol generating. Otolaryngologists are likely at high risk of contracting COVID-19 during aerosol generating procedures because they are likely exposed to high viral loads in patients infected with the virus. Based on the precautionary principle, even though the evidence is not definitive, adopting enhanced personal protective equipment protocols is reasonable based on the evidence. Further research is needed to clarify the risk associated with performing various procedures during the COVID-19 pandemic, and the degree to which various personal protective equipment reduces the risk.
Publisher
Springer Science and Business Media LLC
Subject
Otorhinolaryngology,Surgery
Reference89 articles.
1. Jones RM, Brosseau LM. Aerosol transmission of infectious disease. J Occup Environ Med. 2015;57(5):501–8.
2. CSOHNS Executive Committee. Guideline for healthcare workers performing aerosol-generating medical procedures during the COVID-19 pandemic. 2020. Available from: https://www.entcanada.org/wp-content/uploads/Protocol-for-COVID-and-AGMP-3-iw-mailer.pdf. Accessed 6 May 2020.
3. World Health Organization. Infection prevention and control during health care when COVID-19 is suspected. Interim guidance, 19 March 2020. Geneva; 2020 [cited 2020 Apr 10]. Available from: https://www.file:///Users/apple/Downloads/WHO-2019-nCoV-IPC-2020.3-eng(1).pdf. Accessed 6 May 2020.
4. Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z, et al. SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. N Engl J Med. 2020;382(12):1177–9 Available from: https://doi.org/10.1056/NEJMc2001737.
5. van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N Engl J Med. 2020; Available from: https://doi.org/10.1056/NEJMc2004973.
Cited by
183 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献