A novel irrigation device with superior nasal irrigation efficiency to the classic rinse bottle

Author:

Wu DaweiORCID,Chang Feifan,Hong Junsheng,Su Baihan,Wei Yongxiang

Abstract

Abstract Background The ability of saline irrigation to detach the mucous and the flow-limiting effect of the nasal valve has not been well explored. The objective of this study was to compare the removal efficiency of a novel irrigation device with an extended nozzle versus a classic rinse bottle. Methods Transparent casts of the unoperated sinonasal cavity were made by 3D printing. Yogurt was used to simulate mucous. The cast filled with 5 ml yogurt was fixed in six head positions and irrigated with 120 ml, 175 ml, and 240 ml dyed water through the novel device and the rinse bottle. The irrigation efficiency was the ratio of the weight of yogurt washed away divided by the total weight of yogurt. Results The irrigation stream of a long nozzle with a side opening was different from the irrigation stream of the outlet within the nasal vestibule. The novel devices presented with continuous water stream directly upwards to the anterior part of the olfactory cleft. Depending on different head positions, it was easy for the novel devices to achieve an irrigation efficiency of 100% when the cast was irrigated with 120 ml or 175 ml water. There was still a tiny amount of yogurt left in the olfactory cleft when the cast was irrigated with 240 ml water under each head position for the rinse bottle. The irrigation efficiency was volume-dependent, and the average irrigation efficiency of the rinse bottle at 240 ml only reached 69.1%. Conclusions The novel irrigation device presented with superior nasal irrigation efficiency to the classic rinse bottle. A continuous water stream directly upwards to the anterior part of the olfactory cleft combined with an extended nozzle overcoming the flow-limiting effect of the nasal valve promotes nasal irrigation efficiency. Graphical Abstract

Funder

Beijing Hospitals Authority Youth Program

Beijing Science and Technology Nova Program

Natural Science Foundation of China

Beijing Hospitals Authority Clinical Medicine Development of Special Funding

Publisher

Springer Science and Business Media LLC

Subject

Otorhinolaryngology,Surgery

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3