Author:
Hanly Mark,Churches Tim,Fitzgerald Oisín,Caterson Ian,MacIntyre Chandini Raina,Jorm Louisa
Abstract
Abstract
Background
COVID-19 mass vaccination programs place an additional burden on healthcare services. We aim to model the queueing process at vaccination sites to inform service delivery.
Methods
We use stochastic queue network models to simulate queue dynamics in larger mass vaccination hubs and smaller general practice (GP) clinics. We estimate waiting times and daily capacity based on a range of assumptions about appointment schedules, service times and staffing and stress-test these models to assess the impact of increased demand and staff shortages. We also provide an interactive applet, allowing users to explore vaccine administration under their own assumptions.
Results
Based on our assumed service times, the daily throughput for an eight-hour clinic at a mass vaccination hub ranged from 500 doses for a small hub to 1400 doses for a large hub. For GP clinics, the estimated daily throughput ranged from about 100 doses for a small practice to almost 300 doses for a large practice. What-if scenario analysis showed that sites with higher staff numbers were more robust to system pressures and mass vaccination sites were more robust than GP clinics.
Conclusions
With the requirement for ongoing COVID-19 booster shots, mass vaccination is likely to be a continuing feature of healthcare delivery. Different vaccine sites are useful for reaching different populations and maximising coverage. Stochastic queue networks offer a flexible and computationally efficient approach to simulate vaccination queues and estimate waiting times and daily throughput to inform service delivery.
Funder
Ian Sharp, philanthropic supporter of UNSW research
Sydney Partnership for Health, Education, Research and Enterprise (SPHERE) Infectious diseases, Immunity and Inflammation (Triple-I) Clinical Academic Group
Publisher
Springer Science and Business Media LLC
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献