Prospective evaluation of social risks, physical function, and cognitive function in prediction of non-elective rehospitalization and post-discharge mortality

Author:

Clancy Heather A.,Zhu Zheng,Gordon Nancy P.,Kipnis Patricia,Liu Vincent X.,Escobar Gabriel J.

Abstract

Abstract Background Increasing evidence suggests that social factors and problems with physical and cognitive function may contribute to patients’ rehospitalization risk. Understanding a patient’s readmission risk may help healthcare providers develop tailored treatment and post-discharge care plans to reduce readmission and mortality. This study aimed to evaluate whether including patient-reported data on social factors; cognitive status; and physical function improves on a predictive model based on electronic health record (EHR) data alone. Methods We conducted a prospective study of 1,547 hospitalized adult patients in 3 Kaiser Permanente Northern California hospitals. The main outcomes were non-elective rehospitalization or death within 30 days post-discharge. Exposures included patient-reported social factors and cognitive and physical function (obtained in a pre-discharge interview) and EHR–derived data for comorbidity burden, acute physiology, care directives, prior utilization, and hospital length of stay. We performed bivariate comparisons using Chi-square, t-tests, and Wilcoxon rank-sum tests and assessed correlations between continuous variables using Spearman’s rho statistic. For all models, the results reported were obtained after fivefold cross validation. Results The 1,547 adult patients interviewed were younger (age, p = 0.03) and sicker (COPS2, p < 0.0001) than the rest of the hospitalized population. Of the 6 patient-reported social factors measured, 3 (not living with a spouse/partner, transportation difficulties, health or disability-related limitations in daily activities) were significantly associated (p < 0.05) with the main outcomes, while 3 (living situation concerns, problems with food availability, financial problems) were not. Patient-reported cognitive (p = 0.027) and physical function (p = 0.01) were significantly lower in patients with the main outcomes. None of the patient-reported variables, singly or in combination, improved predictive performance of a model that included acute physiology and longitudinal comorbidity burden (area under the receiver operator characteristic curve was 0.716 for both the EHR model and maximal performance of a random forest model including all predictors). Conclusions In this insured population, incorporating patient-reported social factors and measures of cognitive and physical function did not improve performance of an EHR-based model predicting 30-day non-elective rehospitalization or mortality. While incorporating patient-reported social and functional status data did not improve ability to predict these outcomes, such data may still be important for improving patient outcomes.

Funder

Kaiser Foundation Hospitals, Inc

The Permanente Medical Group, Inc.

National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Health Policy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3