Predictive modeling of initiation and delayed mental health contact for depression

Author:

Panaite Vanessa,Finch Dezon K.,Pfeiffer Paul,Cohen Nathan J.,Alman Amy,Haun Jolie,Schultz Susan K.,Miles Shannon R.,Belanger Heather G.,Kozel F. Andrew F.,Rottenberg Jonathan,Devendorf Andrew R.,Barrett Blake,Luther Stephen L.

Abstract

Abstract Background Depression is prevalent among Operation Enduring Freedom and Operation Iraqi Freedom (OEF/OIF) Veterans, yet rates of Veteran mental health care utilization remain modest. The current study examined: factors in electronic health records (EHR) associated with lack of treatment initiation and treatment delay; the accuracy of regression and machine learning models to predict initiation of treatment. Methods We obtained data from the VA Corporate Data Warehouse (CDW). EHR data were extracted for 127,423 Veterans who deployed to Iraq/Afghanistan after 9/11 with a positive depression screen and a first depression diagnosis between 2001 and 2021. We also obtained 12-month pre-diagnosis and post-diagnosis patient data. Retrospective cohort analysis was employed to test if predictors can reliably differentiate patients who initiated, delayed, or received no mental health treatment associated with their depression diagnosis. Results 108,457 Veterans with depression, initiated depression-related care (55,492 Veterans delayed treatment beyond one month). Those who were male, without VA disability benefits, with a mild depression diagnosis, and had a history of psychotherapy were less likely to initiate treatment. Among those who initiated care, those with single and mild depression episodes at baseline, with either PTSD or who lacked comorbidities were more likely to delay treatment for depression. A history of mental health treatment, of an anxiety disorder, and a positive depression screen were each related to faster treatment initiation. Classification of patients was modest (ROC AUC = 0.59 95%CI = 0.586–0.602; machine learning F-measure = 0.46). Conclusions Having VA disability benefits was the strongest predictor of treatment initiation after a depression diagnosis and a history of mental health treatment was the strongest predictor of delayed initiation of treatment. The complexity of the relationship between VA benefits and history of mental health care with treatment initiation after a depression diagnosis is further discussed. Modest classification accuracy with currently known predictors suggests the need to identify additional predictors of successful depression management.

Funder

Health Services Research and Development

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3